2^{nde} **GT** Physique-Chimie **Thème :** Constitution et transformations de la matière

M. GINEYS

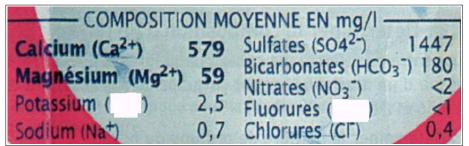
Chapitre 2 : Vers des entités plus stables

Feuille d'évaluation à rendre obligatoirement avec la copie

Activité documentaire n°2.2 : Formation des ions et des molécules

	Questions	Points attribués		
Appel n°1	1-2-3-4-5	/0,5 /0,5 /1,5 /0,5 /1,5		
Appel n°2	6-7-8-9-10	/0,5 /0,5 /0,5 /0,5 /1		
Appel n°3	11-12	/1,5 /1,5		
Appel n°4	13	/3,5		
Appel n°5	14-15-16	/ 2,5 /0,5 /1		
Un pas vers le cours	17-18	/1 /1		
	Total:	/ 20		

Noms -Prénoms des élèves du groupe


- 1.
- 2.
- 3.

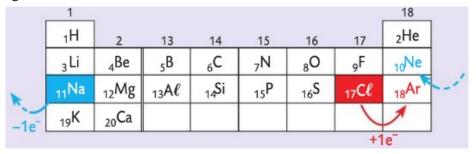
Partie A: Formation des ions

Les étiquettes des eaux minérales précisent la formule des principaux ions dissous qu'elles contiennent.

→ Comment déterminer la charge électrique d'un ion monoatomique à partir du tableau périodique ?

Document 1 : étiquette d'eau minérale

Document 2 : une famille particulière


Les éléments hélium He, néon Ne et argon Ar possèdent une stabilité énergétique remarquable.

Ils réagissent très rarement avec d'autres éléments.

Ils appartiennent à la 18e colonne du tableau périodique et constituent la famille des gaz nobles.

Cette stabilité est due à leur couche externe saturée.

Contrairement aux gaz nobles, tous les autres atomes sont instables.

QUESTIONS

1.	À partir du document 1, <u>identifier</u> un point commun dans les noms des <u>cations monoatomiques.</u>				
2.	À partir du document 1 <u>, ider</u>	ntifier un point commun dans les noms des <u>anions monoatomiques.</u>			
3.	Écrire les configurations élec	ctroniques des trois atomes ci-dessous :			
	Atome	Configuration électronique			
	Hélium				
	Néon				
	Argon				
4.	À quelle famille chimique ce	s éléments appartiennent-ils ? Pourquoi sont-ils stables ?			
5.		ons électroniques, indiquer le nombre d'électrons de valence que possède <u>justifier</u> les termes: « couche externe saturée ».			
		Appel n°1 du professeur pour validation			
6.	<u>Écrire</u> la configuration électr	onique d'un atome de magnésium (symbole : Mg , Z = 12).			
7.	•	ue de l'ion magnésium présent dans l'eau minérale. (doc 1) on, l'atome de magnésium a perdu ou gagné des électrons (préciser le nombre).			
8.	3. <u>En déduire</u> la configuration électronique de <u>l'ion</u> magnésium à partir des questions 6 et 7.				
9.	<u>Identifier</u> le gaz noble le plu	s proche du magnésium. (doc 1)			
10.	10. <u>Comparer</u> la configuration électronique de l'ion magnésium et celle du gaz noble le plus proche du magnésium. <u>Conclure</u> en expliquant dans quel but un atome peut former un ion monoatomique. (doc 2)				
2		Appel n°2 du professeur pour validation			

Appel n°3 du professeur pour validation			
• • • • • •			
	En déduire la formule chimique de l'ion fluorure.		
	ou un anion puis		
	12. En suivant toujours le même raisonnement, <u>expliquer</u> si le fluor (symbole : F) va former en solution un cation		
•••••			
•••••			
••••			
	En déduire la formule chimique de l'ion potassium.		
	anion.		
	11. En sulvant ce faisonnement, expliquer si le potassium (symbole : k) va former en solution un cation ou un		

11. En suivant co raisannement, avaliquer si la natassium (symbola : K) va former en solution un sation qui

Partie B: Formation des molécules

Pour se stabiliser, certains atomes peuvent former des liaisons avec d'autres atomes pour former des molécules. Gilbert Lewis (1875-1946) était un chimiste américain qui a travaillé notamment sur la liaison de valence.

→ Comment exploiter le modèle de Lewis d'une molécule pour justifier la stabilisation de cette entité par rapport aux atomes isolés ?

Document 1 : schéma de Lewis d'un atome

Le schéma de Lewis d'un atome représente la couche électronique de valence de l'atome.

Le noyau et les couches électroniques internes sont représentés par le symbole de l'atome.

Les électrons de valence sont représentés par des points • que l'on répartit l'un après l'autre sur les quatre « côtés » du symbole. Par conséquent, à partir du 5^{ème} électron de valence, ceux-ci se retrouvent « par deux » sur chaque côté et forment des doublets non liants.

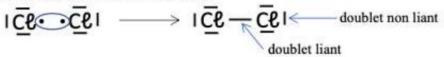
On peut donc trouver autour du symbole de l'atome :

- ➤ des électrons seuls appelés « électron célibataire » et représentés par un point •.
- des électrons par pair appelés « doublet non liant » et représenté par un trait -.

<u>Exemple</u>: Le soufre (Z = 16) a pour configuration électronique $1s^2 2s^2 2p^6 3s^2 3p^4$. Il a donc 6 électrons de valence répartis autour de l'atome :

Les électrons qui se retrouvent par pair sur un même côté sont représentés par un trait.

Le schéma de Lewis de l'atome de soufre va contenir 2 doublets non liants et 2 électrons célibataires : L'emplacement de ces doublets non liants et de ces électrons célibataires n'a pas d'importance, du moment qu'ils sont autour du symbole.


·<u>\$</u>ı

Document 2 : schéma de Lewis d'une molécule

Le schéma de Lewis d'une molécule s'établit en assemblant les schémas de Lewis des atomes.

Les électrons célibataires face à face s'assemblent et forment alors des doublets liants. Il s'agit bien de la mise en commun de deux électrons de valence par deux atomes, donc d'une liaison covalente.

Exemple: Formation de la molécule de dichlore $C\ell_2$:

QUESTIONS

13. <u>Compléter</u> le tableau suivant. les schémas de Lewis des molécules dans le tableau ci-dessous.

Atome	Numéro atomique Z	Configuration électronique	Nombre d'électrons de valence	Schéma de Lewis
Azote N	Z = 7			
Oxygène O	Z = 8			
Hydrogène H	Z = 1			
Chlore Cℓ	Z = 17			
Carbone C	Z = 6			
Aluminium A&	Z = 13			
Argon Ar	Z = 18			

Appel n°4 du professeur pour validation

Document 3 : schéma de Lewis de quelques molécules

Méthane H H — C — H H	Dihydrogène H — H	Diazote N ≡ N	
Еаи Н — <u>О</u> — Н	Ammoniac H — N — H H	Dioxygène (O == O)	

14. Pour chaque schéma de Lewis du document 3, <u>compléter</u> le tableau ci-dessous. (doc 2 et 3) **S'appuyer** sur l'exemple du méthane.

Nom de la molécule	Atome ciblé	Nombre de doublets liants	Nombre de doublets non liants	Nombre d'électrons de valence entourant l'atome ciblé
0.0 544	С	4	0	4 x 2= 8
Méthane	Н	1	0	1 x 2 = 2
Diazote	N			
F	0			
Eau	Н			
A	N			
Ammoniac	Н			
Dioxygène	0			
Dihydrogène	Н			

15. <u>Comparer</u> le nombre d'électrons entourant un atome d'hydrogène dans le schéma de Lewis d'une molécule au nombre d'électrons de valence que possède l'atome de gaz noble le plus proche.			
<u>Conclure</u> en expliqua	l pour un atome de carbone, e ant pourquoi les atomes au se		es.
	Appel n°5 du profe	sseur pour validation	
Il faut donc fournir de l'énerg L'énergie de liaison entre deu		saire afin de rompre cette liai	ison et voici quelques valeurs : de référence consultés.
Ammoniac H — N — H H 17. <u>Comparer</u> l'énergie o <u>En déduire</u> laquelle o	Liaison O-H O-O O=O C-O C=O * C-C C=C C-N N-H N-N de liaison d'une liaison double est la plus stable.	Energie de liaison (USI) 464 142 502 351 730 347 615 293 390 159 e et celle d'une liaison simple	(exemple : E _{C=C} et E _{C-C})
18. <u>Exprimer puis calcul</u>	<u>er</u> l'énergie nécessaire pour r	ompre toutes les liaisons d'u	ne molécule d'ammoniac.