Correction des exercices du chapitre 5 :

Attention les corrections ne sont pas toujours rédigées correctement. Les solutions rédigées sont faites en classe ou dans le livre avec les exercices résolus p 56

QCM p. 55

1. A et C; 2. B; 3. B et C; 4. A et C; 5. B; 6. C; 7. C; 8. A, B et C; 9. A et C; 10. C.

Exercices S'entraîner _______p. 58

Décrire l'évolution d'une quantité de matière (1)

- L'observation qui montre qu'une transformation a lieu est l'évolution de la couleur de la solution.
- La coloration s'intensifiant, il se forme du diiode donc la quantité de diiode augmente au cours du temps.

Décrire l'évolution d'une quantité de matière (2)

Au cours de la transformation, il se forme des ions Cu²⁺(aq), qui colorent en bleu la solution et le métal cuivre disparaît, donc la couleur bleue de la solution s'intensifie (la quantité d'ion cuivre (II) Cu²⁺ (aq) augmente) et la taille du morceau de cuivre diminue (la quantité de cuivre solide Cu(s)) diminue, les photos doivent donc être classées dans l'ordre suivant : 2, 1, 3 et 4.

Construire un tableau d'avancement

Équation de	la réaction	3 Fe (s)	+ 2O ₂ (g) -	→ Fe ₃ O ₄ (s)		
État du	Avancement	Quantités de matière (en mmol)				
système	(en mmol)	n(Fe)	n(O ₂)	n(Fe ₃ O ₄)		
État initial	x = 0	6,3	4,6	0		
État intermédiaire	х	6,3 - 3x	4,6 – 2x	х		
État final	$x = x_{f}$	6,3 - 3x,	4,6 - x,	x,		

Ottiliser un tableau d'avancement

1.

Équation de	la réaction	2 Mg (s)	+ O ₂ (g) -	→ 2 MgO (s)		
État du	Avancement	Quantités de matière (en mmol)				
système	(en mmol)	n(Mg)	n(O ₂)	n(MgO)		
État initial	État initial $x = 0$		4,0	0		
État intermédiaire	x	10,0 – 2x	4,0 - x	2x		

2. Pour x = 3,2 mmol, $n(Mg) = 10,0 - 2 \times 3,2 = 3,6$ mmol; $n(O_2) = 4,0 - 3,2 = 0,8$ mmol et $n(MgO) = 2 \times 3,2 = 6,4$ mmol.

7 Identifier un réactif limitant

1. Hypothèse 1 : si A est le réactif limitant, alors $x_{max} = \frac{9,0}{3} = 3,0$ mol.

Hypothèse 2 : si B est le réactif limitant, alors $x_{max} = \frac{8,0}{2} = 4,0$ mol.

La plus petite des deux valeurs est l'avancement maximal donc $x_{\rm max} = 3.0$ mol.

2. Le réactif limitant est le réactif associé à la valeur retenue de x_{max} , A est donc le réactif limitant.

B Exploiter la couleur d'un mélange réactionnel

- L'ion permanganate est la seule espèce chimique colorée et, à l'état final, la solution est incolore donc l'ion permanganate a entièrement réagit, il est le réactif limitant.
- 2. x_{max} vérifie l'équation : 5,0×10⁻² x_{max} = 0 soit x_{max} = 5,0×10⁻² mmol.

p. 58 Déterminer la composition d'un système à l'état final

Équation de	la réaction	Pb2+ (aq) +	+ 2 l⁻(aq) -	→ Pbl ₂ (s)
État du	Avancement	Quantités	s de matière (en mmol)
système	(en mmol)	n(Pb2+)	n(l-)	n(Pbl ₂)
État initial	x = 0	5,0	5,0	0
État intermédiaire	×	5,0 -x	5,0 - 2x	x
État final	$x = x_f$	$5,0-x_{\rm f}$	5,0 - 2x _f	X _f

2. La transformation étant totale, $x_f = x_{max}$.

Hypothèse1 : si l'ion plomb (II) est le réactif limitant, alors $x_{max} = 5.0$ mmol.

Hypothèse 2 : si l'ion iodure est le réactif limitant, alors $x_{max} = \frac{5.0}{2} = 2.5$ mmol. La plus petite des deux valeurs est l'avancement maximal donc $x_{max} = 2.5$ mmol.

3. Dans l'état final, $n_{f}(Pb^{2+}) = 5,0 - 2,5 = 2,5 \text{ mmol };$ $n_{f}(I^{-}) = 5,0 - 2 \times 2,5 = 0 \text{ mmol et } n_{f}(PbI_{2}) = 2,5 \text{ mmol.}$

Exploiter la composition d'un système dans l'état final

1.

	Équation de	la réaction	4 A ℓ (s) +	+ 3 O ₂ (aq) →	2 A 🕻 2 O 3 (s)			
	État Avancement		Quantités de matière (en mmol)					
l	du système	(en mmol)	n(Aℓ)	n(O ₂)	n(Aℓ ₂ O ₃)			
	État initial	x = 0	$n_o(A\ell)$	n ₀ (O ₂)	0			
	État final $x = x_f$		$n_0(A\ell) - 4x_f$	$n_0 (O_2) - 3x_f$	2x _f			

2. $n_f(A\ell_2O_3) = 2x_f = 80$ mmol donc $x_f = 40$ mmol. Le métal aluminium est le réactif limitant donc $n_0(A\ell) - 4x_f = 0$ soit $n_0(A\ell) = 4 \times 40 = 160$ mmol.

Comparer les avancements final et maximal

1. $x_i = n_i(C_1H_4O_2) = 18$ mmol (graphiquement).

2. Hypothèse 1 : si le méthanol CH_4O est le réactif limitant, alors $27 - x_{max} = 0$ donc $x_{max} = 27$ mmol.

Hypothèse 2 : si l'acide méthanoïque CH_2O_2 est le réactif limitant, alors $27 - x_{max} = 0$ donc $x_{max} = 27$ mmol.

Donc $x_{max} = 27$ mmol.

3. $x_r < x_{max}$ donc la transformation n'est pas totale ; la phrase en italique est erronée.

12 Déterminer l'état d'un système chimique

1. Pour un avancement $x : n(Fe^{3+}) = 3,0 - x, n(HO^{-}) = 12,0 - 3x$ et $n(Fe(OH)_{2}) = x$

Pour un avancement $x = 1,0 \text{ mmol}: n(Fe^{3+}) = 2,0 \text{ mmol},$ $n(HO^-) = 9,0 \text{ mmol et } n(Fe(OH)_3) = 1,0 \text{ mmol}.$ Pour un avancement $x = 2,0 \text{ mmol}: n(Fe^{3+}) = 1,0 \text{ mmol},$ $n(HO^-) = 6,0 \text{ mmol et } n(Fe(OH)_3) = 2,0 \text{ mmol}.$

2. Il faut d'abord déterminer x_{max} :

Hypothèse 1 : si l'ion Fe³+ (aq) est le réactif limitant, alors $3.0-x_{\max}=0$ donc $x_{\max}=3.0$ mmol.

Hypothèse 2 : si l'ion hydroxyde HO $^-$ (aq) est le réactif limitant, alors 12,0 - 3 x_{max} = 0 donc x_{max} = 4,0 mmol.

Donc $x_{max} = 3.0$ mmol. Puisque $x_f = x_{max}$ la réaction est totale.

(13) Côté maths

Hypothèse 1 : si A est le réactif limitant, alors $12,0 - 4x_{max} = 0$ donc $x_{\text{max}} = \frac{12,0}{4} = 3,0 \text{ mmol.}$

Hypothèse 2 : si B est le réactif limitant, alors $9.0 - 3x_{max} = 0$ donc $x_{\text{max}} = \frac{9,0}{3} = 3,0 \text{ mmol.}$

Les quantités finales des réactifs s'annulent pour la même valeur de x mass, le mélange initial est stœchiométrique.

14 Identifier les relations stœchiométriques

Relations 2. et 4.

15 Identifier les mélanges stæchiométriques

- 1. Les réactifs sont en proportions stœchiométriques si
- 2. Le mélange a. vérifie la relation précédente.

Exercices

S'entraîner

16 Les feux d'artifices

1. 2 KC
$$\ell$$
O₃(s) + 3 C(s) \rightarrow 2 KC ℓ (s) + 3 CO₃(g)

2.
$$n_0(KC\ell O_3) = \frac{300}{122,6} = 2,45 \text{ mol} ; n_0(C) = \frac{50}{12,0} = 4,2 \text{ mol}$$

limitant, alors 2,45 –
$$2x_{max} = 0$$
 donc $x_{max} = \frac{2,45}{2} = 1,22$ mol.

Hypothèse 2 : si le carbone C (s) est le réactif limitant, alors
$$4,2-3x_{max}=0$$
 donc $x_{max}=\frac{4,2}{3}=1,4$ mol.

Le réactif limitant est donc le chlorate de potassium KClO, (s).

4. Pour que le mélange soit stœchiométrique, il faut que
$$n_o(C) - 3x_{max} = 0$$
 donc $n_o(C) = 3 \times 1,22 = 3,66$ mol.

La masse de carbone correspondant est : $m(C) = n_0(C) \times M(C) = 3,66 \times 12,0 = 43,9 g.$

(17) Côté maths L'acide citrique

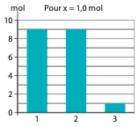
1. a. Le mélange initial est stœchiométrique si

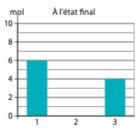
$$\frac{n_0(C_6H_2O_7)}{1} = \frac{n_0(HO^-)}{3}$$
.

Le mélange b. vérifie cette égalité.

b. Pour le mélange b, les 2 réactifs sont limitants donc

$$x_{\text{max}} = \frac{4}{1} = \frac{12}{3} = 4 \text{ mol} = n_s (C_6 H_5 O_7^{3-}).$$


L'eau est en excès car c'est le solvant de cette solution aqueuse. 2. a. Pour le mélange (a) :


Hypothèse 1: si l'acide citrique C₆H₈O₇ (aq) est le réactif limitant, alors $n_0(C_6H_8O_7) - x_{max} = 0$ donc $x_{max} = 10$ mol.

Hypothèse 2 : si l'ion hydroxyde HO- (aq) est le réactif limitant,

alors $n_0(\text{HO}^-) - 3x_{max} = 0$ donc $x_{max} = 4$ mol. La plus petite des deux valeurs est l'avancement maximal donc $x_{max} = 4$ mol et le réactif limitant est l'ion hydroxyde HO⁻(aq).

1 : acide citrique ; 2 : ions hydroxyde ; 3 : ions citrate

3. La quantité d'eau n'est pas représentée car l'eau est le solvant et elle est en excès.

18 Connaître les critères de réussite Un mélange qui s'enflamme

1. La quantité initiale d'aluminium est :

$$n_0(A\ell) = \frac{m(A\ell)}{M(A\ell)} = \frac{5,00}{27,0} = 0,185 \text{ mol.}$$

La quantité initiale de soufre est : $n_0(S) = \frac{m(S)}{M(S)} = \frac{5,00}{32,1} = 0,156$ mol.

2. Hypothèse 1 : si l'aluminium A ℓ (s) est le réactif limitant, alors $n_0(A\ell) - 2x_{max} = 0 \text{ donc } x_{max} = \frac{0,185}{2} = 0,93 \text{ mol.}$

Hypothèse 2 : si le soufre S (s) est le réactif limitant, alors $n_0(S) - 3x_{max} = 0 \text{ donc } x_{max} = \frac{0,156}{3} = 5,19 \times 10^{-2} \text{ mol.}$

La plus petite des deux valeurs est l'avancement maximal donc $x_{\text{max}} = 5,19 \times 10^{-2} \text{ mol.}$

3.
$$m(A\ell_2S_3) = n_i(A\ell_2S_3) \times M(A\ell_2S_3) = x_{max}$$
. $M(A\ell_2S_3) = 7.80 \text{ g}$

19 Exercice à caractère expérimental

Réaction entre le métal magnésium et l'acide chlorhydrique

- 1. L'éprouvette initialement remplie d'eau permet de recueillir le gaz formé par déplacement d'eau.
- 2. On approche une allumette enflammée de l'éprouvette, si elle contient du dihydrogène, on entend un jappement.
- Couple Mg²⁺/Mg et couple H⁺/H₂.

4.
$$n_0(Mg) = \frac{m}{M(Mg)} = \frac{0.12}{24} = 5.0 \times 10^{-3} \text{ mol} = 5.0 \text{ mmol}$$

 $n_0(H^*) = C \times V_{\text{solution}} = 0.50 \times 40 \times 10^{-3} = 2.0 \times 10^{-2} \text{ mol} = 20 \text{ mmol}$

$$n (H^+) = C \times V$$
 = 0.50 × 40 × 10⁻³ = 2.0 × 10⁻² mol = 20 mmol

5. On suppose que la transformation est totale :

Hypothèse 1 : si le magnésium Mg (s) est le réactif limitant, alors $n_0(Mg) - x_{max} = 0 \text{ donc } x_{max} = 5.0 \text{ mmol.}$

Hypothèse 2 : si l'ion hydrogène H+ (aq) est le réactif limitant, alors $n_0(H^+) - 2x_{max} = 0 \text{ donc } x_{max} = \frac{20}{2} = 10 \text{ mmol. Le réactif limitant est}$ donc le magnésium.

6. Graphiquement: V₂(H₂) = 120 mL.

Or,
$$x_f = n_f(H_2) = \frac{V_f(H_2)}{V_m} = \frac{120 \times 10^{-3}}{24} = 5.0 \times 10^{-3} \text{ mol} = 5.0 \text{ mmol}.$$

7. Comme x = x, la transformation étudiée est totale.

20 À chacun son rythme

Combustion complète du propane

1.
$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

2.
$$n_o(C_3H_8) = \frac{m}{M} = \frac{528}{44.0} = 12.0 \text{ mol et } n_o(O_2) = \frac{m}{V_m} = \frac{1440}{24} = 60 \text{ mol}$$

Ces quantités vérifient l'égalité $\frac{n_0(C_3H_8)}{1} = \frac{n_0(O_2)}{5}$, le mélange initial est donc stœchiométrique.

21 Résolution de problème

Voiture essence peu polluante

Pistes de résolution

S'approprier

- Les voitures « essence » peuvent être classées en fonction de la masse de dioxyde de carbone CO₂ qu'elles rejettent par km parcouru.
- Le dioxyde de carbone CO₂ rejetté par un véhicule « essence » est produit par la combustion du carburant assimilable à l'octane C₈H₁₈.
 Analyser
- Écrire l'équation de la réaction de combustion de l'octane afin de relier la quantité d'essence consommée à la quantité de dioxyde de carbone produite.
- Utiliser la valeur de la consommation d'essence pour 100 km pour déterminer la quantité d'essence correspondant.
- En déduire la quantité, puis la masse, de dioxyde de carbone rejetée pour 100 km parcouru puis pour 1 km.

Réaliser

- L'équation de la réaction doit être écrite et correctement ajustée.
- La masse d'octane correspondant à 3,6 L est calculée en utilisant la masse volumique et le volume.
- La quantité d'octane correspondant à 3,6 L est calculée en utilisant le résultat précédent et la masse molaire moléculaire.
- La quantité, puis la masse, de dioxyde de carbone correspondant est calculée, d'abord pour 100 km puis pour 1km.

Valider

 Comparer le résultat obtenu au tableau de classement afin de répondre à la question posée.

Étapes de résolutions proposées

1^{re} étape : Bien comprendre la question posée

- 1. Les voitures « essence » rejettent du dioxyde de carbone.
- 2. Le caractère plus ou moins polluant d'une voiture « essence » peut être estimé par la masse de dioxyde de carbone qu'elle rejette dans l'atmosphère pour un déplacement d'une distance donnée, par exemple 1 km.

2° étape : Lire et comprendre les documents

1. On peut assimiler l'essence à un seul hydrocarbure, l'octane.

- 2. La masse de dioxyde de carbone rejetée par une voiture « essence » est liée au volume d'essence, donc essentiellement d'octane, qu'elle consomme.
- Cette relation peut être obtenue en exploitant l'équation de la réaction de combustion de l'octane et en tenant compte du fait que cette réaction est totale.

3° étape : Dégager la problématique

Déterminer la masse dioxyde de carbone rejetée quand la voiture effectue un déplacement de 1 km en utilisant le volume d'essence qu'elle consomme.

4° étape : Construire la réponse

- Ecrire l'équation de combustion de l'octane.
- Déterminer quantité d'octane correspondant à 3,6 L
- Déterminer la quantité, puis la masse, de dioxyde de carbone correspondant à 100 km, puis à 1 km.
- · Rechercher la place de ce véhicule dans le classement.

5° étape : Rédiger la réponse en trois paragraphes

• Présenter le contexte et introduire la problématique.

Les véhicules « essence » consomment de l'essence et produisent du dioxyde de carbone.

Afin de déterminer l'étiquette énergétique est associée à un véhicule « essence », il faut calculer la masse de dioxyde de carbone qu'il rejette quand il parcourt une distance de 1 km. Pour faire ce calcul, il faut utiliser la valeur du volume d'essence rejetée par la voiture quand elle parcourt 100 km.

• Mettre en forme la réponse.

- Equation la réaction de combustion :
- $\overset{\cdot}{2}$ C₈H₁₈(g) + 25 O₂(g) \rightarrow 16 CO₂(g) + 18 H₂O(g)
- On calcule la masse d'octane contenue dans 3,6 L d'essence : $m_o(C_BH_{18}) = \rho_{essence} \times V = 740 \times 3,6 = 2,7 \times 10^3 \text{ g}$
- On en déduit la quantité d'octane contenue dans 3,6 L

d'essence :
$$n_0(C_8H_{18}) = \frac{m(\text{octane})}{M(\text{octane})} = 23 \text{ mol.}$$

- L'octane est le réactif limitant puisque le dioxygène est puisé dans l'air, donc n₀(C₈H₁₈) - 2x_{max} = 0 soit x_{max} = 12 mol.
- Donc, pour 100 km, la quantité de dioxyde de carbone rejetée est $n_i(CO_2) = 16 \times x_{max} = 1.9 \times 10^2$ mol et la masse de dioxyde de carbone correspondant est : $m_i(CO_2) = n_i(CO_2) \times M(CO_2) = 8.2 \times 10^3$ g.
- Ainsi, pour 1 km parcouru, la voiture rejette 82 g de dioxyde de carbone. La classe énergétique du véhicule est donc A car les émissions calculées sont inférieures à 100 g/km.

Conclure et introduire, quand c'est possible, une part d'esprit critique.

Un véhicule « essence » consommant 3,6 L d'essence pour parcourir 100 km a une étiquette énergétique A.

22] Suivi d'une réaction lente

1. Les ions permanganate sont responsables de la couleur du milieu réactionnel et consommés au cours de la transformation, la solution devient donc progressivement incolore.

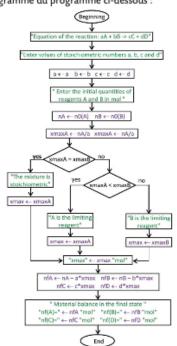
2. $n_1 = C_1 \times V_1 = 4,00 \times 10^{-5}$ mol et $n_2 = C_2 \times V_2 = 1,00 \times 10^{-3}$ mol

3.	Équation de la réaction		2 MnO4- (aq)	F 5 H ₂ C ₂ O ₄ (aq)	→	2 Mn2+ (aq)	+ 10 CO ₂ (aq)	+ 8 H ₂ O (ℓ)
	État du Avancement		Quantités de matière (en mmol)					
	système	(en mmol)	n(MnO ⁴⁻)	n(H ₂ C ₂ O ₄)	n(H⁺)	n(Mn²+)	n(CO ₂)	n(H ₂ O)
	État initial	x = 0	$n_0(MnO^{4-}) = n_1$	$n_0(H_2C_2O_4) = n_2$	Excès	$n_0(Mn^{2+}) = 0$	$n_0(CO_2) = 0$	Excès
	État final	$x = x_f$	$n_2 - 2x_f$	$n_1 - 5x_f$	Excès	2x _f	10x,	Excès

4. La transformation est totale et l'ion permanganate est le réactif limitant (car le mélange est incolore en fin de transformation): $n_1 - 2x_{max} = 0$ donc $4,00 \times 10^{-5} - 2x_{max} = 0$ soit $x_{max} = 2,00 \times 10^{-5}$ mol

- **5.** Graphiquement : $x_f = 20 \, \mu \text{mol} = 2,00 \times 10^{-5} \, \text{mol}.$
- **6.** Comme $x_f = x_{max}$ la transformation est totale.

23 How to programm the calculations of material balance


Ressources python et aide à la mise en œuvre : lycée. hachette-education.com/pc/1re

1. Programme Python® testé sur l'exercice 9 :

Equation of the reaction: aA + bB -> cC + dD \ n \ Enter values of stoichiometric numbers a, b, c and d " a = 1 b = 2 c = 1 d = 0

Enter the initial quantities of reagents A and B in mol no (A) = 0.005 no (B) = 0.005 B is the limiting reagent xmax = 0.0025 mol Material balance in the final state nf (A) = 0.0025 mol nf (B) = 0.0 mol nf (C) = 0.0025 mol nf (C) = 0.0025 mol nf (C) = 0.0025 mol nf (D) = 0.0 mol nf (C) = 0.0025 mol nf (D) = 0.0 mol

2. Organigramme du programme ci-dessous :

Vers l'épreuve écrite

p. 63

Mission Apollo (30 min)

1.
$$n_0(H_2) = \frac{m(H_2)}{M(H_2)} = \frac{24,0 \times 10^3}{2 \times 1,0} = 1,2 \times 10^4 \text{ mol}$$

2. a. La relation b correspond à un mélange stœchiométrique.

b. Pour le mélange initial stœchiométrique :

$$m(O_2) = n_0(O_2) \times M(O_2) = \frac{n_0(H_2)}{2} \times M(O_2) = 1,92 \times 10^5 \text{ g} = 192 \text{ kg}.$$

- Cet écart correspond aux besoins en dioxygène de l'équipage pour la respiration.
- 4. Besoins en eau pour 14 jours et 3 astronautes :

$$m_{\text{nécessaire}}(H_2O) = 14 \times 3 \times 4,0 = 168 \text{ kg},$$

donc
$$n_{\text{nécessaire}}(H_2O) = \frac{m(H_2O)}{M(H_2O)} = \frac{168 \times 10^3}{18,0} = 9,33 \times 10^3 \text{ mol}$$

Production d'eau par les P.A.C. :

$$n_{\text{produite}}(H_2O) = 2x_{\text{max}} = n_0(H_2) = 1,2 \times 10^4 \text{ mol} >$$

Comme $n_{\text{produite}}(H_2O) > n_{\text{necessive}}(H_2O)$, l'eau produite par les P.A.C a suffi pour les besoins de l'équipage.

Etude d'une réaction d'oxydoréduction par spectrophotométrie (30 min)

1. Le diiode, seule espèce chimique colorée présente, est produit au cours de la transformation, la couleur jaune-orangé du milieu réactionnel devient donc de plus en plus intense au cours du temps. **2.** $n_1 = C_1 \times V_1 = 9.0 \times 10^{-3} \times 50 \times 10^{-3} = 0.45$ mmol;

$$n_2 = C_2 \times V_2 = 5,0 \times 10^{-2} \times 25 \times 10^{-3} = 1,25 \text{ mmol}$$

3.

Équation de la réaction		H ₂ O ₂ (s) + 2 l	(aq) + 2 H+ (aq) → I	₂ (aq) + 2 H	₂ O (ℓ)	
État	Avance-	Qua	Quantités de matière (en mmol)				
du système	ment (en mmol)	n(H ₂ O ₂)	n(l ⁻)	n(H°)	n(l ₂)	n(H ₂ O)	
État initial	x = 0	$n_0 (H_2O_2) = n_1$	$n_0(\mathbf{I}^-) = n_2$	Excès	$n_{_{0}}\left(\mathbf{I}_{_{2}}\right)=0$	Excès	
État final	$x = x_f$	$n_1 - x_{_f}$	$n_2 - 2x_f$	Excès	x,	Excès	

4. On suppose que la transformation est totale.

Hypothèse 1 : si le peroxyde d'hydrogène $H_2O_2(aq)$ est le réactif limitant, alors $n_1 - x_{max} = 0$ donc $x_{max} = 0,45$ mmol. Hypothèse 2 : si l'ion iodure l⁻ (aq) est le réactif limitant, alors $n_2 - 2x_{max} = 0$ donc $x_{max} = 0,63$ mmol.

L'avancement maximal est $x_{max} = 0,45$ mmol et le réactif limitant est le peroxyde d'hydrogène.

5. Graphiquement: A_r = 0,36

6.
$$C_r(I_2) = \frac{A_r}{60} = 6.0 \times 10^{-3} \text{ mol} \cdot L^{-1}.$$

- 7. $x_r = n_r(l_2) = C_r(l_2) \times V_{total} = 6.0 \times 10^{-3} \times (50 + 25) \times 10^{-3} = 0.45$ mmol.
- Comme x_t = x_{max}, la transformation est totale, l'hypothèse de la question 4. est donc vérifiée.

Reporter la valeur de x_{max} dans les grandeurs de la ligne « état final » et effectuer les calculs correspondants.

Montrer que les résultats obtenus sont cohérents avec l'énoncé. Justifier le fait que la quantité de diazote N_2 n'a pas varié en utilisant la composition de l'air.

Vers l'oral

23 Application

Modéliser une transformation chimique :

Sur la diapositive, écrire l'équation de la réaction de combustion du dihydrogène dans l'air : $2 H_2(g) + O_2(g) = 2 H_2O(g)$

et rappeler la composition de l'air : environ 20% de dioxygène O₂(g) et 80% de diazote N₂(g).

Faire apparaitre le tableau d'avancement construit en utilisant l'exemple du cours §1.a p 52.

Faire apparaître les valeurs des quantités initiales dans les cases de la 1ère ligne du tableau.

Faire apparaître les grandeurs des lignes « état intermédiaire » et « état final ».

Faire apparaître le calcul de l'avancement maximal x_{max} en utilisant l'exemple du cours §2 p 52.

Je m'exprime à l'oral sur

L'évolution d'un système

- Qu'est-ce qu'un réactif limitant?
- C'est le réactif qui est entièrement consommé à la fin de la réaction.
- En fin de réaction, que deviennent les réactifs introduits en proportions stœchiométriques?

Ils sont entièrement consommés.

 Lors d'une transformation totale, l'avancement final est-il différent de l'avancement maximal?

Non, ils sont égaux.

EXERCICE RÉSOLU

p. 64

 En quelle unité s'exprime l'avancement x d'une réaction chimique?

ET COMMENTÉ

L'avancement s'exprime en mole.

30 Calculs historiques

ÉNONCÉ

En 1775, le chimiste français Antoine-Laurent Lavoisier (1743-1794) montre par une expérience que le dioxygène est l'un des constituants de l'air. Pour cela, il utilise une quantité initiale $n_{\rm Hg,i}=608\,$ mmol de mercure (Hg) et un échantillon d'air qui comprend une quantité initiale $n_{\rm Og,i}=5,6\,$ mmol de dioxygène. Il obtient en fin de transformation une masse $m=2,38\,$ g d'oxyde de mercure (II) (HgO). L'équation de réaction peut s'écrire :

$$2 \text{ Hg}(\ell) + O_2(g) \rightarrow 2 \text{ HgO(s)}.$$

Données: masses molaires: M(Hg) = 201 g·mol-1; M(O) = 16 g·mol-1.

- 1. Établir un tableau d'avancement de la transformation étudiée par Lavoisier.
- 2. Déterminer le réactif limitant.
- 3. Exprimer puis calculer la quantité d'oxyde de mercure (II) formée, puis la masse correspondante, en supposant que la transformation est totale.
- 4. Vérifier que le résultat est conforme à celui obtenu par Lavoisier.

l obtient en fin de

S'APPROPRIER

Utiliser les notations de l'énoncé pour répondre aux guestions.

UNE SOLUTION

Équati	on de réaction	2 Hg(ℓ) + O ₂ (g)		\rightarrow	2 HgO(s)	
État	Avancement	Quantité de matière				
initial	0	n _{HE.1}		$n_{0_2 j}$		0
final	X ₁	$n_{\text{MgJ}} - 2x_{\text{f}}$		$n_{0_2,1} - x_f$		2x ₁

2. Si le mercure est le réactif limitant, alors : $n_{Hg,i} - 2x_{max,1} = 0$, soit $x_{max,1} = \frac{n_{Hg,i}}{2}$

A.N.:
$$x_{\text{max,1}} = \frac{608 \text{ mmol}}{2} = 304 \text{ mmol}.$$

Si le dioxygène ex le réactif limitant, alors $n_{0_2,i} - x_{\max,2} = 0$, soit $x_{\max,2} = n_{0_2,i} = 5,6$ mmol. La plus petite des deux valeurs correspond à l'avancement maximal. Donc $x_{\max} = 5,6$ mmol et le réactif limitant est le dioxygène.

3. La transformation étant considérée comme totale, l'avancement final est égal à l'avancement maximal, et la quantité finale de HgO vaut donc :

$$n_{\text{HgO,f}} = 2x_{\text{max}} = 2 \times 5,6 \text{ mmol} = 11 \text{ mmol}.$$

Cette quantité correspond à une masse $m_{{\rm HgO},f} = n_{{\rm HgO},f} \times M({\rm HgO})$

A.N.:
$$m_{HgO,f} = 11 \times 10^{-3} \text{ mol} \times (201 + 16) \text{ g} \cdot \text{mol}^{-1} = 2,4 \text{ g}.$$

Ce résultat est conforme à l'expérience car Lavoisier a obtenu 2,38 g de HgO.

ANALYSER

Interpréter l'équation : la consommation de deux moles de Hg et d'une mole de O_2 conduit à la formation de deux moles de HgO.

RÉALISER

- Résoudre l'équation linéaire du premier degré.
- Écrire les unités dans les étapes intermédiaires peut être utile mais pas obligatoire. L'unité est en revanche indispensable dans l'écriture finale du résultat.

VALIDER

Comparer la valeur trouvée à la valeur de l'énoncé.

32 Un fixateur photographique fragile

L'ion thiosulfate est utilisé en tant que « fixateur » dans le développement des photographies argentiques. En milieu trop acide, l'ion thiosulfate S₂O₂² (aq) réagit avec lui-même pour former l'ion tétrathionate S, Oc (aq) et du soufre S(s), transformation modélisée par la réaction d'oxydoréduction d'équation :

$$5 S_2O_3^{2-}(aq) + 6 H^+(aq) \rightarrow 2 S(s) + 2 S_4O_6^{2-}(aq) + 3 H_2O(\ell)$$

L'acidification d'une solution contenant initialement une quantité d'ion thiosulfate n_{thio,i} = 0,100 mol conduit à la formation d'un échantillon de soufre de masse $m_{s,f} = 1,1 \text{ g}.$

Donnée: masse molaire, M(S) = 32,0 g · mol-1.

- Un premier couple oxydant-réducteur intervenant est S₂O₃²⁻ (aq) / S(s). Identifier l'autre couple mis en jeu dans la réaction.
- 2. Construire le tableau d'avancement de la transformation. L'eau étant le solvant et l'ion hydrogène n'étant pas limitant, leurs quantités ne seront pas précisées.
- 3. Calculer l'avancement final x, de la réaction.
- 4. En déduire le caractère total ou non de la transformation étudiée.

L'autre couple est S₄O₆² (aq) / S₂O₃² (aq).

Équation de réaction		5 S ₂ O ₃ ²⁻ (aq) +	+ 6 H+(aq) -	→ 2 S(s)	+ 2 S ₄ O ₆ ²⁻ (aq) +	+ 3 H ₂ O(ℓ)		
État	État Avancement		Quantité de matière					
initial	0	n _{thiq,i}	/	0	0	/		
final	$x_{\rm f}$	$n_{\text{this,j}} - 5x_{\text{f}}$	/	$2x_f$	$2x_{f}$	/		

3. La quantité de soufre produite permet de déterminer la valeur de l'avancement à

$$n_{S,f} = \frac{m_{S,f}}{M(S)} = \frac{1.1 \text{ g}}{32.0 \text{ g} \cdot \text{mol}^{-1}} = 0.034 \text{ mol} = 34 \text{ mmol}.$$

D'autre part : $n_{S,f} = 2 x_f$, soit $x_f = \frac{n_{S,f}}{2} = \frac{34 \text{ mmol}}{2} = 17 \text{ mmol}$.

4. Dans l'hypothèse d'une transformation totale, l'ion thiosulfate, réactif limitant de la transformation, aurait été entièrement consommé :

$$n_{\mathrm{thio,i}}$$
 – $5\,x_{\mathrm{max}}$ = 0, soit $x_{\mathrm{max}} = \frac{n_{\mathrm{thio,i}}}{5} = \frac{0,100\,\mathrm{mol}}{5} = 20\,\mathrm{mmol}$. Puisque $x_f < x_{\mathrm{max}}$, la transformation n'est pas totale.

Se rappeler de la définition d'un couple oxydant-réducteur.

Construire le tableau d'avancement en respectant les notations de l'énoncé. Ne pas confondre les quantités de matière et les nombres stæchiométriques.

RÉALISER

Écrire les unités dans les étapes intermédiaires peut être utile mais pas obligatoire. L'unité est en revanche indispensable dans l'écriture finale du résultat.

ANALYSER RAISONNER

L'avancement final x_f se déduit de la quantité de produit formé. L'avancement maximal X_{max} se déduit de la quantité de réactif introduite à l'état initial.

Comparer les valeurs de x₁ et x_{max} permet de conclure sur le caractère total ou non de la transformation.