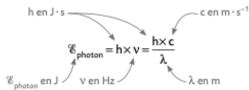
Correction des exercices de révisions 1ère « échauffements » du chapitre 19 :

Attention les corrections ne sont pas toujours rédigées correctement. Les solutions rédigées sont faites en classe ou dans le livre avec les exercices résolus

Vu en première La lumière


p. 406

Réactiver ses connaissances

Capsule vidéo: Interpréter et prévoir des spectres

1. La fréquence de cette radiation est donnée par $v = \frac{c}{\lambda}$ donc $v = \frac{3,00 \times 10^8 \text{ m} \cdot \text{s}^{-1}}{505 \times 10^{-9} \text{ m}} = 5,94 \times 10^{14} \text{ Hz}.$

2. L'énergie transportée par chacun des photons de cette radiation est :

$$\mathsf{Donc}\, \mathfrak{C}_{\mathsf{photon}} \! = \frac{6,\!63\!\times\!10^{-34}~\text{J}\cdot\text{s}\times\!3,\!00\!\times\!10^8~\text{m}\cdot\text{s}^{-1}}{505\!\times\!10^{-9}~\text{m}}$$

$$\mathscr{E}_{photon} = 3,94 \times 10^{-19} \text{ J}.$$

- 3. Le spectre est un spectre d'émission. Lors de l'émission d'un photon l'énergie de l'atome diminue. La transition mise en jeu est donc la transition (a).
- 4. Le spectre d'absorption de l'hélium sera constitué de raies noires sur fond coloré. Les raies noires correspondent à des radiations de même longueur d'onde que les radiations associées aux raies colorées du spectre d'émission.

Flash test

1. B; 2. B et C; 3. B; 4. A