Correction des exercices de révisions 2nde « échauffements » du chapitre 10 :

Attention les corrections ne sont pas toujours rédigées correctement. Les solutions rédigées sont faites en classe ou dans le livre avec l'exercice résolu p 292-293

> 1 Tous les instruments sont des émetteurs, le milieu propagation est l'air, les récepteurs sont les oreilles des spectateurs.

> 2 a. Le son (le tonnerre) nécessite un milieu matériel pour se propager, contrairement à la lumière (l'éclair) qui peut se propager dans le vide.

> b. Le milieu matériel de propagation du tonnerre est l'air dans cette situation.

> c. L'éclair est perçu en premier car la lumière se propage beaucoup plus vite que le son.

3 Le son se propage dans les milieux matériels : l'air, l'eau, la terre et le fer.

4 a. La distance à laquelle se trouve la source est :

 $d = v\Delta t = 340 \times 10 = 3.4 \times 10^3 \text{ m}$

b. La durée mise par le son pour arriver est $\Delta t = \frac{d}{v} = \frac{3.4}{340} = 1.0 \times 10^{-2} \text{ s}.$

S Bonnes réponses : 1. c. 2. a. et c.

6 Signaux périodiques : a. et c.

Sur le signal a, on mesure 23 ms pour deux périodes.

Donc la période du signal est : $T_a = \frac{23}{2} = 11,5 \text{ ms}$

La fréquence du signal est : $f_a = \frac{1}{T_a} = \frac{1}{11,5 \times 10^{-3}} = 87 \text{ Hz}$

Sur le signal c, on mesure 6,4 cm pour 4 périodes, or 1,0 cm sur le dessin correspond à 0,4 s donc 6,4 cm correspondent à 0,4 \times 6,4 = 2,56 s.

La période du signal est donc : $T_c = \frac{2,56}{4} = 0,64 \text{ s}$

et sa fréquence est : $f_c = \frac{1}{T_c} = \frac{1}{0,64} = 1,6$ Hz.

7 a.
$$v = \frac{d}{\Delta t}$$
 b. $\Delta t = \frac{d}{v}$ 8 a. $f = \frac{1}{T}$ b. $T = \frac{1}{f}$

b. 1,5 kHz = 1.5×10^3 Hz (écrire 1 500 Hz ne serait pas juste car ne respecte pas le nombre de chiffres significatifs).

10 C_1 et C_2 ont une période égale à 2π . C_1 est telle que $-2 \le y \le 2$, donc c'est la courbe représentative de f. C_3 est telle que $-1 \le y \le 1$, donc c'est la courbe représentative de g. C_3 a une période égale à π et est telle que $-1 \le y \le 1$, donc c'est la courbe représentative de h.