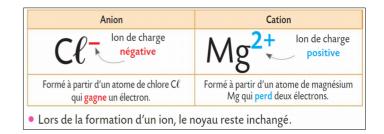
2 ⁿ	^{de} G	T
Physiq	ue-C	himie

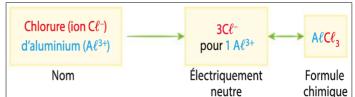
Thème: Constitution et transformations de la matière



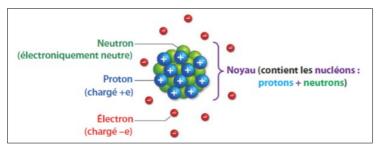
Chapitre 1 : De l'atome à l'élément chimique

Hachette éducation

I. Vocabulaire


- Une **entité chimique** peut désigner un atome, une molécule, un ion (ou un ensemble d'ions) qui constitue la matière à l'échelle <u>microscopique</u>.
- Une **espèce chimique** désigne une collection d'un nombre très élevé d'entités identiques.
- Une **molécule** est un assemblage d'atomes : elle est électriquement neutre.
- Un **ion** est formé à partir d'un atome ayant <u>perdu ou gagné un ou plusieurs électrons</u>.
 - Un atome ayant gagné un ou plusieurs électrons est un anion : il est donc chargé négativement.
 - Un atome ayant perdu un ou plusieurs électrons est un cation : il est donc chargé positivement.

- Un composé ionique ou **solide ionique** est formé de cations et d'anions.


Dans un solide ionique, les charges positives des cations compensent les charges négatives des anions : il est électriquement neutre.

Le nom d'un solide ionique commence toujours par celui de l'anion et se termine par celui du cation, mais dans sa formule chimique, c'est le contraire.

II. Constitution d'un atome

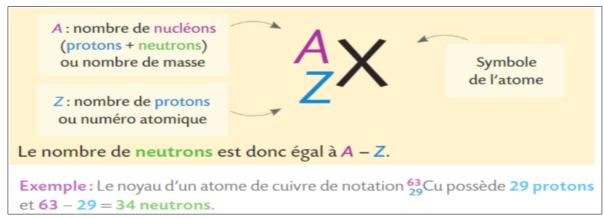
Un atome est constitué d'un noyau et d'électrons en mouvement désordonné autour de ce noyau.

Particule	Localisation	Masse	Charge électrique
Proton	- Noyau	1,673 × 10 ⁻²⁷ kg	+ e
Neutron		1,675 × 10 ⁻²⁷ kg	0
Électron	Cortège électronique	9,109 × 10 ⁻³¹ kg	– e

- e est la **charge électrique élémentaire** : c'est la plus petite charge existante. Elle s'exprime en Coulomb de symbole C et a pour valeur : $e = 1,60 \times 10^{-19}$ C.

Les charges électriques du proton (+e) et de l'électron (-e) sont opposées. Les neutrons ont une charge nulle. **Un atome est donc électriquement neutre car il possède autant de protons que d'électrons.**

Remarques:


- La masse d'un neutron est environ égale à celle d'un proton.
- La masse d'un électron est négligeable devant celle d'un nucléon.

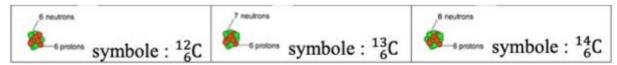
1

III. Noyau d'un atome

III. a) Écriture conventionnelle :

On représente conventionnellement le noyau d'un atome avec la notation : $\frac{A}{Z}X$ tels que :

Les atomes ou les ions monoatomiques ayant le même **nombre de protons** dans leur noyau correspondent au même élément chimique.


Un élément chimique est caractérisé par son numéro atomique Z et son symbole chimique.

On peut rapidement identier des isotopes à partir des écritures conventionnelles.

<u>Définition</u>: Deux isotopes ont le même nombre de protons mais un nombre de neutrons différent

→ Z est donc identique et A est différent!

Exemple:

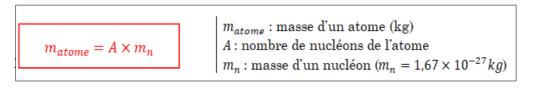
III. b) Dimension

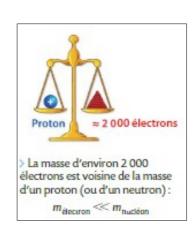
L'ordre de grandeur du rayon du noyau est d'environ $\mathbf{10}^{-15}$ m tandis que celui du rayon d'un atome est de $\mathbf{10}^{-10}$ m.

$$\frac{r_{\text{atome}}}{r_{\text{noyau}}} = \frac{10^{-10}}{10^{-15}} = 10^5$$

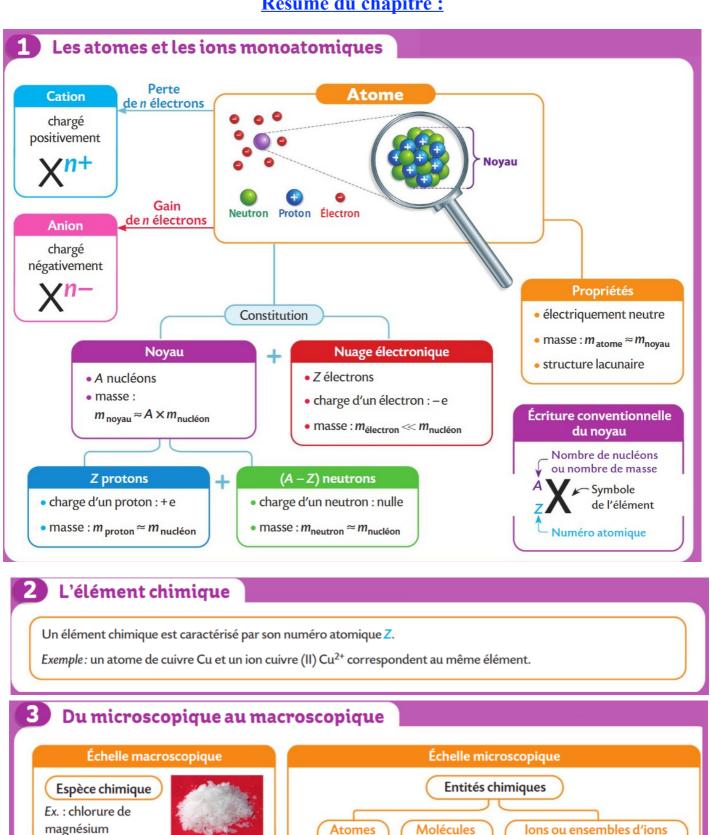
Le rayon d'un atome est alors 100 000 fois plus grand que celui de son noyau. L'espace existant entre les électrons mais aussi entre les électrons et le noyau est **vide**.

On dit que l'atome a une **structure lacunaire**.




III. c) Masse

On peut considérer en très bonne approximation que la masse d'un atome est pratiquement égale à de celle de son noyau.


Le noyau d'un atome contient A nucléons.

Chaque nucléon a une masse m_n, la masse d'un atome m_{atome} s'écrit :

Résumé du chapitre :

Électroneutralité de la matière

Ex.: H2O

Ex. : C

Ex.: Mg^{2+} ; $C\ell^{-}$

Ex.: dans le chlorure de magnésium, il y a deux fois plus d'ions chlorure $C\ell^-$ que d'ions magnésium Mg^{2+} . Sa formule s'écrit MgC ℓ_2 .