Chapitre 1: Transformations acide-base

Cours livre p 16 à 17

Objectifs et trame du chapitre (6 séances)

I. Les acides et les bases

Activité documentaire n°1.1 : Couple acide-base. (1 séance)

Capacités visées :

Terminale Spécialité Physique-Chimie

- Identifier, à partir d'observations ou de données expérimentales, un transfert d'ion hydrogène, les couples acide-base mis en jeu, et établir l'équation d'une réaction acide-base.
- Connaître les couples acide-base de l'eau, de l'acide carbonique, d'acides carboxyliques, d'amines.

II. Quelques espèces particulières

Activité de modélisation n°1.2 : Libération des ions hydrogène H⁺ (1 séance)

Capacités visées :

- Représenter le schéma de Lewis et la formule semi-développée d'un acide carboxylique, d'un ion carboxylate, d'une amine et d'un ion ammonium.
- Identifier le caractère amphotère d'une espèce chimique.

Exercices d'application:

4-6 p 22 (Livre Hachette éducation) et 1 à 8 (livret exos révisions chimie)

III. <u>Le pH</u>

Activité expérimentale n°1.3 : Mesure de pH (2 séances)

Capacités visées :

- Identifier, à partir d'observations ou de données expérimentales, un transfert d'ion hydrogène, les couples acide-base mis en jeu, et établir l'équation d'une réaction acide-base.
- Déterminer, à partir de la valeur de la concentration en ions oxonium H_3O^+ , la valeur de la solution et inversement à l'aide de la relation pH=-log $(\frac{[H_3O^+]}{C^0})$.
- Mesurer le pH de solutions d'acide chlorhydrique (H₃O⁺, Cl⁻) obtenues par dilutions successives d'un facteur 10 pour tester la relation entre le pH et la concentration en ion oxonium H₃O⁺ apporté.
- Capacité mathématique : Utiliser la fonction logarithme décimal et sa réciproque.

Exercices d'application:

n°8 cahier python p 13, et 9 à 12 (livret exos révisions chimie)

Bilan et correction d'exercices (2 séances)

Synthèse des activités :

Vidéo: Acides et bases https://youtu.be/bUXw9v7Jv5I

ACIDE-BASE: DEFINITIONS

Acide-base selon Robert BOYLE (1650)

Un acide a un goût aigre. Il corrode les métaux, colore la teinture de tournesol en rouge et devient moins acide lorsqu'il est mélangé à une base.

Une base est visqueuse, colore la teinture de tournesol en bleu et devient moins basique lorsqu'elle est mélangée à un acide.

Acide-base selon Svante August ARRHENIUS (1887)

Un acide est une espèce chimique susceptible de fournir des protons H⁺.

Une base est une espèce chimique susceptible de fournir des ions hydroxyde HO:

Acide-base selon Gilbert Norton LEWIS (1923) :

Un acide partage un doublet d'électrons d'une base pour se lier à elle.

Une base partage un de ses doublets d'électrons pour se lier avec un acide.

Acide-base selon Johannes BRÖNSTED (1923):

Un acide est une espèce chimique susceptible de céder un ou plusieurs proton

Une base est une espèce chimique susceptible de capter un ou plusieurs proton H⁺.

LE COUPLE MODELE

Lorsqu'un acide AH cède son proton H⁺, il se transforme en sa base conjuguée A⁻.

La base A⁻ a récupéré les 2 électrons de la liaison covalente A-H car l'atome A est plus électronégatif que l'atome H.

Lorsqu'une base A capte un proton H+, elle se transforme en son acide conjugué AH.

A

La base A⁻ a partagé un des électrons de son doublet non liant avec le proton H⁺.

On dit alors que les deux espèces chimiques forment un couple acide-base AH/A⁻:

 AH/A^{-}

acide

<u>base</u>

ATTENTION!

Un proton H⁺ ne se balade jamais seul en solution aqueuse. Il sera immédiatement capté par une base (ex : l'eau).

Cette équation n'en est donc pas une et ne représente pas du tout ce qu'il se passe en réalité. On met donc un signe « = » plutôt qu'une flèche.

Analogie avec la demi-équation d'oxydoréduction

REACTION ACIDE-BASE = 2 COUPLES

Un proton H⁺ ne pouvant se retrouver seul dans une solution aqueuse, il ne peut donc pas être présent dans l'équation de réaction. La seule possibilité pour qu'un acide AH cède son proton H⁺ est qu'il le cède directement à la base B⁻ d'un autre couple. Il faut donc deux couples pour une réaction acide-base :

Couple 1 : $AH_{(aq)}/A_{(aq)}^-$ Couple 2 : $BH_{(aq)}/B_{(aq)}^-$

Espèces chimiques présentes en solution : $AH_{(aq)}$ et $B_{(aq)}^-$ (et H_2O)

Equation de la réaction se produisant :

$$AH_{(aq)} + B_{(aq)}^- \rightleftarrows A_{(aq)}^- + BH_{(aq)}$$

EQUATION-BILAN

Demi-équation 1: $AH_{(aq)} = A_{(aq)}^{-} + H^{+}$

Demi-équation 2: $B_{(aq)}^- + H^+ = BH_{(aq)}$

EQUATION-BILAN: $AH_{(aq)} + B_{(aq)}^- \rightleftarrows A_{(aq)}^- + BH_{(aq)}$

Le proton n'apparaît pas dans l'équation-bilan

ANALOGIE TRANSFORMATION ACIDOBASIQUE / OXYDOREDUCTION

Transformation acidobasique

Acide : espèce chimique susceptible de céder un ou plusieurs proton H+.

Base : espèce chimique susceptible de capter un ou

plusieurs proton H+.

Particule échangée : le proton H*.

Couple: acide / base conjuguée

Demi-équation: acide = base conjuguée + H⁺

Remarque : le proton H+ ne circule pas librement en solution aqueuse car il serait directement associé à une molécule d'eau pour donner un ion oxonium $H_3O_{(aq)}^+$. Deux couples acide/base doivent donc être présents en solution pour que l'échange de proton se fasse directement entre l'acide AH d'un couple 1 $AH_{(aq)}/A_{(aq)}^-$ et la base B d'un couple 2 $BH_{(aq)}/B_{(aq)}^-$:

$$AH_{(aq)} + B_{(aq)}^- \rightleftarrows A_{(aq)}^- + BH_{(aq)}$$

Oxydoréduction

Réducteur: espèce chimique susceptible de céder un ou plusieurs électrons.

Oxydant : espèce chimique susceptible de capter un ou plusieurs électrons.

Particule échangée : l'électron. Couple: oxydant / réducteur

Demi-équation: $oxydant + n.e^- = réducteur$

Remarque : l'électron e ne circule pas librement en solution aqueuse (seulement dans un métal). Deux couples oxydant/réducteur doivent donc être présents en solution pour que l'échange d'électrons se fasse directement entre le réducteur Réd₁ d'un couple 1 Ox₁/Réd₁ et l'oxydant Ox₂ d'un couple 2 Ox2/Réd2:

$$n_1. \, Ox_2 + n_2. \, R\acute{e}d_1 \rightleftarrows n_1. \, R\acute{e}d_2 + n_2. \, Ox_1$$

TAUX D'AVANCEMENT FINAL τ_ε

Le taux d'avancement final d'une réaction permet de savoir si une réaction est totale ou équilibrée et donne une indication sur le rendement auquel on pourrait s'attendre. Il est défini par :

$$\tau_f = \frac{x_f}{x_{max}}$$

$$0r: 0 \le x_f \le x_{max} \Leftrightarrow 0 \le \tau_f = \frac{x_f}{x_{max}} \le 1$$

si $\tau_f = 0$: il n'y a pas de transformation

si $0 \le \tau_f \le 1$: la transformation est **non totale** (ou limitée, ou équilibrée)

 $si \tau_f = 1 : la transformation est totale$

x_f: avancement déterminé lorsque la réaction est terminée (elle n'évolue plus).

 \mathbf{x}_{max} : avancement de la réaction si la réaction était totale et que le réactif limitant était consommé entièrement.

EXEMPLE:

Equation de la réaction :		СН ₃ СООН _(аq)	$+ H_2O_{(1)} -$	→ CH ₃ COO _(aq) +	H ₃ O ⁺ _(aq)
<u>Etat du</u> <u>système</u>	<u>Avancement de</u> <u>la réaction</u>	Quantités de matière présentes dans le système			
Initial	x = 0	0,010	excès	0	0
En cours	×	0,010 - x	excès	x	×
Final	Xf	$0.010 - x_f$	excès	$x_f = 4,0.10^{-5}$	$x_f = 4,0.10^{-5}$

Volume de la solution : $V_s = 10,0 \text{ mL}$; concentration en acide éthanoïque : 1,0 mol/L.

$$\tau_f = \frac{4,0.\,10^{-5}}{0,010}$$

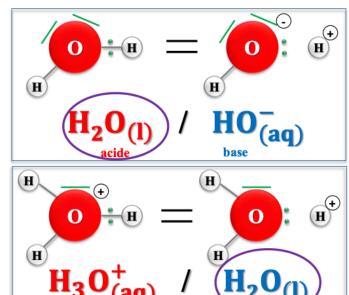
 $\Rightarrow \tau_f = 4.0.10^{-3} \text{ ou } 0.40\%$

⇒ réaction très limitée

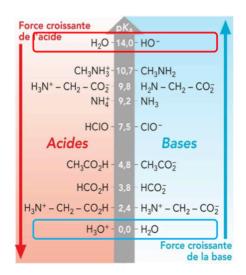
II. Quelques espèces particulières

L'EAU

L'eau se comporte à la fois :


• comme un acide dans le couple acidebase $H_2O_{(l)}$ / $HO_{(aq)}^-$ car l'eau cède un proton :

$$H_2O_{(1)} = HO_{(aq)}^- + H^+$$


• comme une base dans le couple acidebase $H_3O^+_{(aq)}/H_2O_{(l)}$ car l'eau capte un proton :

$$H_3O_{(aq)}^+ = H_2O_{(1)} + H^+$$

On dit que c'est une espèce amphotère (ou un ampholyte).

On peut ainsi observer sur le schéma ci-contre que l'eau est à la fois l'acide le plus faible et la base la plus faible.

L'EAU DANS L'EAU

Eau:

Une molécule d'eau jouant le rôle d'acide cède un proton H^+ à une autre molécule d'eau jouant le rôle de base .

Couple 1 : $H_2O_{(1)}/HO_{(aq)}^-$ Couple 2 : $H_3O_{(aq)}^+/H_2O_{(1)}$

Espèces chimiques présentes en solution : H₂O₍₁₎.

Equation de la réaction se produisant :

$$H_2O_{(l)} + H_2O_{(l)} \rightleftarrows H_3O_{(aq)}^+ + HO_{(aq)}^-$$

ou : $2H_2O_{(l)} \rightleftarrows H_3O_{(aq)}^+ + HO_{(aq)}^-$

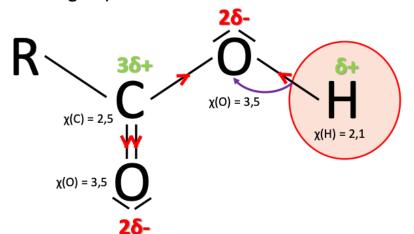
Cette réaction est nommée « autoprotolyse de l'eau ».

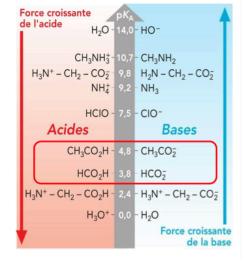
Eau:

On peut modéliser cette réaction par deux demi-équations :

 $\underline{Demi-\acute{e}quation 1:} \qquad \qquad \underline{H_2O_{(l)}} = \underline{HO_{(aq)}}^- + \underline{H^+}$

 $\underline{\text{Demi-\'equation 2:}} \qquad \qquad H_2O_{(l)} + \underline{H^+} = H_3O_{(aq)}^+$


EQUATION-BILAN: $2H_2O_{(l)} \rightleftarrows H_3O_{(aq)}^+ + HO_{(aq)}^-$


ACIDES CARBOXYLIQUES

Les acides carboxyliques RCOOH sont aussi capables de céder leur proton H⁺ qui est le moins lié : celui qui est lié l'atome d'oxygène O (atome

électronégatif).

En cédant son proton H⁺, **l'acide carboxylique RCOOH** se transforme alors en sa base conjuguée : **l'ion carboxylate RCOO**-.

$$\begin{array}{ccc}
R & O & H & = & R & O & + & H \\
O & & O & & & \\
RCOOH_{(aq)} & = & RCOO_{(aq)}^{-} + & H^{+}
\end{array}$$

Le couple acide-base correspondant est donc : $RCOOH_{(aq)}/RCOO_{(aq)}^-$

UN ACIDE CARBOXYLIQUE DANS L'EAU

Acide carboxylique:

Un acide carboxylique RCOOH cède un proton H^+ à une molécule d'eau (solvant) jouant le rôle de base .

Couple 1 : $(RCOOH_{(aq)})/RCOO_{(aq)}^-$

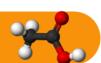
Couple 2: $H_3O_{(aq)}^+/H_2O_{(1)}$

Espèces chimiques présentes en solution : RCOOH(aq) et H₂O(l).

Equation de la réaction se produisant :

$$RCOOH_{(aq)} + H_2O_{(1)} \rightleftharpoons RCOO_{(aq)}^- + H_3O_{(aq)}^+$$

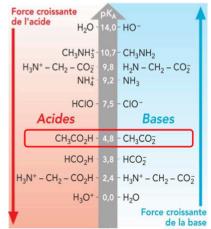
Acide carboxylique:

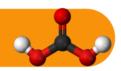

On peut modéliser cette réaction par deux demi-équations :

 $\frac{\text{Demi-\'equation 1:}}{\text{RCOOH}_{(aq)}} = \text{RCOO}_{(aq)}^{-} + \text{H}^{+}$

Demi-équation 2: $H_2O_{(1)} + H^+ = H_3O_{(aq)}^+$

EQUATION-BILAN: $RCOOH_{(aq)} + H_2O_{(l)} \rightleftarrows RCOO_{(aq)}^- + H_3O_{(aq)}^+$


L'ACIDE ETHANOÏQUE


En cédant son proton H⁺, **l'acide éthanoïque** CH₃COOH se transforme alors en sa base conjuguée : **l'ion éthanoate** CH₃COO⁻.

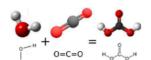
$$CH_3COOH_{(aq)} = CH_3COO_{(aq)}^- + H^+$$

Le couple acide-base correspondant est donc : $CH_3COOH_{(aq)}/CH_3COO_{(aq)}^-$

L'ACIDE CARBONIQUE

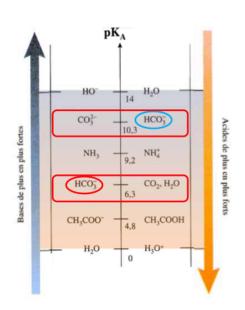
En cédant son proton H⁺, l'acide A son tour, en cédant son proton H⁺, carbonique CO₂,H₂O (que l'on écrit parfois aussi H₂CO₃) se transforme alors base conjuguée **l'ion** hydrogénocarbonate HCO₃.

$$CO_2$$
, $H_2O_{(aq)} = HCO_{3(aq)}^- + H^+$


Le couple acide-base correspondant est donc: CO_2 , $H_2O_{(aq)}/HCO_{3(aq)}^-$

l'ion hydrogénocarbonate HCO₃ se transforme alors en sa base conjuguée : l'ion carbonate CO₃²⁻.

$$HCO_{3(aq)}^{-} = CO_{3(aq)}^{2-} + H^{+}$$


Le couple acide-base correspondant est donc: $HCO_{3(aq)}^{-}/CO_{3(aq)}^{2-}$

L'acide carbonique est parfois nommé « dioxyde de carbone dissous » car lorsque le dioxyde de carbone se dissout dans l'eau, il forme de l'acide carbonique.

COUPLES ACIDE-BASE: L'ACIDE CARBONIQUE

L'ion hydrogénocarbonate HCO₃ peut, à l'instar de l'eau, se comporter à la fois comme un acide ou comme une base : c'est donc aussi une espèce amphotère (ou un ampholyte).

L'ACIDE CARBONIQUE DANS L'EAU

Acide carbonique:

L'acide carbonique CO_2 , H_2O cède un proton H^+ à une molécule d'eau (solvant) jouant le rôle de base .

Couple 1 $(CO_2, H_2O_{(aq)})/HCO_{3(aq)}^{-}$

Couple 2: $H_3O_{(aq)}^+/H_2O_{(1)}$

Espèces chimiques présentes en solution : CO₂, H₂O_(aq) et H₂O_(l).

Equation de la réaction se produisant :

$$CO_2, H_2O_{(aq)} + H_2O_{(l)} \rightleftarrows HCO_{3(aq)}^- + H_3O_{(aq)}^+$$

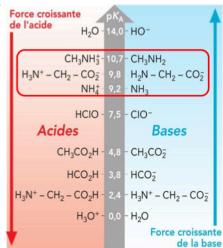
Acide carbonique:

On peut modéliser cette réaction par deux demi-équations :

Demi-équation 1: CO_2 , $H_2O_{(aq)} = HCO_{3(aq)}^- + H^+$

Demi-équation 2: $H_2O_{(1)} + H^+ = H_3O_{(aq)}^+$

EQUATION-BILAN: CO_2 , $H_2O_{(aq)} + H_2O_{(l)} \rightleftarrows HCO_{3(aq)}^- + H_3O_{(aq)}^+$


COUPLES ACIDE-BASE: AMINES

Les amines primaires R-NH₂ se comportent comme des bases. Elles sont aussi capables de capter un proton H⁺ grâce à l'atome d'azote N qui possède un doublet non liant qu'il sera alors capable de partager avec le proton H⁺.

En captant le proton H^+ , l'amine RNH_2 (par exemple) se transforme alors en son acide conjuguée : l'ion alkylammonium RNH_3^+ .

$$RNH_{3(aq)}^+ = RNH_{2(aq)} + H^+$$

Le couple acide-base correspondant est donc : $RNH_{3(aq)}^+/RNH_{2(aq)}$

UNE AMINE DANS L'EAU

Amine:

Une amine RNH_2 capte un proton H^+ à une molécule d'eau (solvant) jouant le rôle d'acide.

Couple 2:
$$H_2O_{(1)}/HO_{(aq)}^-$$

Espèces chimiques présentes en solution : $RNH_{2(aq)}$ et $H_2O_{(l)}$.

Equation de la réaction se produisant :

$$RNH_{2(aq)} + H_2O_{(l)} \rightleftarrows RNH_{3(aq)}^+ + HO_{(aq)}^-$$

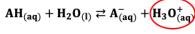
Amine:

On peut modéliser cette réaction par deux demi-équations :

Demi-équation 1:
$$H_2O_{(l)} = HO_{(aq)}^- + H^+$$

Demi-équation 2:
$$RNH_{2(aq)} + H^{+} = RNH_{3(aq)}^{+}$$

EQUATION-BILAN:
$$RNH_{2(aq)} + H_2O_{(l)} \rightleftarrows RNH_{3(aq)}^+ + HO_{(aq)}^-$$


LIEN ENTRE LE pH ET LES IONS OXONIUM

Nous avons vu qu'en solution aqueuse, un acide $AH_{(aq)} + H_2O_{(l)} \rightleftarrows A_{(aq)}^- + (H_3O_{(aq)}^+)$ libérait des ions oxonium H₃O⁺.

La mesure de l'acidité d'une solution se fait donc en mesurant son pH (potentiel hydrogène), qui est une mesure de la concentration en ions oxonium dans la solution :

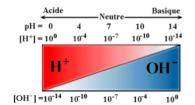
$$\mathbf{pH} = -\log\left(\frac{[\mathbf{H}_3\mathbf{O}^+]}{\mathbf{c}^\circ}\right) \Leftrightarrow \boxed{[\mathbf{H}_3\mathbf{O}^+] = \mathbf{c}^\circ.10^{-\mathrm{pH}}}$$

Ici, c° représente la concentration standard qui a été fixée par convention à : c° = 1 mol.L-1.

Exemple : une solution dont la concentration en ions oxonium est de 10⁻⁵ mol.L⁻¹ aura donc un pH de 5.

➤ Ceci est un « 1 » infiniment précis : 1,00000000000000000...

 $2H_2O$


LIEN ENTRE LE pH ET LES IONS HYDROXYDE

Dans de l'eau distillée (sans minéraux), seules des molécules d'eau sont présentes . Elles peuvent néanmoins réagir entre elles selon la **réaction** d'autoprotolyse de l'eau :

$$2H_2O_{(l)} \rightleftarrows H_3O_{(aq)}^+ + HO_{(aq)}^-$$

Le pH de l'eau étant de 7, la concentration en ions oxonium est de :

$$[H_3O^+] = c^{\circ}.10^{-pH}$$

 $[H_3O^+] = 1.10^{-7} \text{ mol. L}^{-1}$

Quelle est alors la concentration $\mbox{ molaire en ions hydroxyde } [\mbox{H0}^{-}]$?

FONCTIONS LOGARITHME

POINT MATHS

Les fonctions logarithme décimal (log) et logarithme népérien (ln) sont liés par la relation :

$$\log(x) = \frac{\ln(x)}{\ln(10)}$$

De ce fait, ils ont plusieurs propriétés communes qui nous seront utiles en physique-chimie :

$$\begin{array}{lll} ln(a) + ln(b) = ln(a,b) & \text{ou} & log(a) + log(b) = log(a,b) \\ ln(a) - ln(b) = ln\left(\frac{a}{b}\right) & \text{ou} & log(a) - log(b) = log\left(\frac{a}{b}\right) \\ x. ln(a) = ln(a^x) & \text{ou} & x. log(a) = log(a^x) \end{array}$$

De plus, la fonction exponentielle est la fonction « inverse » (bijection réciproque) de la fonction logarithme népérien alors que la puissance de 10 est la fonction « inverse » (bijection réciproque) de la fonction logarithme décimale :

$$\begin{array}{lll} ln(e^x) = x & \quad \text{et} & \quad log(10^x) = x \\ e^{ln(x)} = x & \quad \text{et} & \quad 10^{log(x)} = x \end{array}$$

L'essentiel

Les acides et les bases

Acide

Un acide AH cède au moins un ion hydrogène :

 $AH(aq) \rightarrow A^{-}(aq) + H^{+}$

Base

Une base A⁻ capte au moins un ion hydrogène :

 $A^{-}(aq) + H^{+} \rightarrow AH(aq)$

Couple acide/base

Demi-équation du couple $AH(aq) / A^{-}(aq)$:

 $AH(aq) \rightleftharpoons A^{-}(aq) + H^{+}$

Exemples

- Acide éthanoïque : CH₃CO₂H(aq)
- Acide chlorhydrique : H₃O⁺(aq) + Cℓ⁻(aq)
- Acide nitrique :
 H₃O⁺(aq) + NO₃⁻(aq)

Exemples

- Ammoniac :
 - NH₃ (aq)
- Hydroxyde de sodium :
 Na⁺(aq) + HO⁻(aq)

Couples à connaître

- Acide carboxylique / Ion carboxylate
 RCO₂H(aq) / RCO₂(aq)
- Ion ammonium / Amine
 RNH₃⁺(aq) / RNH₂ (aq)
- Acide carbonique / Ion hydrogénocarbonate
 CO₂, H₂O(aq) / HCO₃ (aq)
- Ion hydrogénocarbonate / Ion carbonate
 HCO₃⁻(aq) / CO₃²⁻(aq)

Espèce amphotère

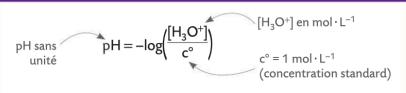
Espèce à la fois acide d'un couple et base d'un autre

Exemple des couples de l'eau :

 $H_3O^+(aq)/H_2O(\ell)$

 $H_2O(\ell)/HO^-(aq)$

La réaction acide-base


Réaction entre l'acide d'un couple $AH(aq) / A^{-}(aq)$ et la base d'un autre couple $BH(aq) / B^{-}(aq)$.

$$AH(aq) \rightleftharpoons A^{-}(aq) + H^{+}$$

 $B^{-}(aq) + H^{+} \rightleftharpoons BH(aq)$

$$AH(aq) + B^{-}(aq) \rightleftharpoons A^{-}(aq) + BH(aq)$$

Le pH d'une solution

Le pH

 $[H_3O^+] = c^{\circ} \times 10^{-pH}$

Pour mesurer le pH, on utilise un pH-mètre étalonné.