Chapitre 8 : Force des acides et des bases

160

Objectifs et trame du chapitre (9 séances)

Autoprotolyse de l'eau – Produit ionique de l'eau

Cours (0.5 séance)

Capacités visées :

- Définir le produit ionique de l'eau.
- Associer Ke à l'équation de réaction correspondante

II. Acides forts et bases fortes Cours (0,5 séance)

Capacités visées :

Associer le caractère fort d'un acide (d'une base) à la transformation quasi-totale de cet acide (cette base avec l'eau).

III. Acides faibles et bases faibles

Activité expérimentale n°8.1 : Force d'un acide ou d'une base (2 séances)

Capacités visées :

- Mesure et incertitudes.
- Comparer la force de différents acides ou de différentes bases dans l'eau.
- Mesurer le pH de solution d'acide ou de base de concentration donnée pour en déduire le caractère fort ou faible de l'acide ou de la base.
- Prévoir la composition finale d'une solution aqueuse de concentration donnée en acide fort apportée.
- Citer des solutions aqueuses d'acides et de bases courantes et les formules des espèces dissoutes associées: acide chlorhydrique, acide nitrique, acide éthanoïque, soude ou hydroxyde de sodium, ammoniac.

Activité numérique n°8.2 : Un conservateur alimentaire : l'acide benzoïque (Python p 91)

Capacités visées :

- Associer K_A aux équations de réactions correspondantes.
- Déterminer, à l'aide d'un langage de programmation, le taux d'avancement final d'une transformation, modélisée par la réaction d'un acide sur l'eau.
- Tracer, à l'aide d'un langage de programmation, le diagramme de distribution des espèces d'un couple acide-base de pKA donné.
- Estimer la valeur de la constante d'acidité d'un couple acide-base à l'aide d'une mesure de pH.
- Prévoir la composition finale d'une solution aqueuse de concentration donnée en acide faible apportée.

Cours (0,5 séance)

Capacités visées :

- Associer K_A aux équations de réactions correspondantes.
- Citer des solutions aqueuses d'acides et de bases courantes et les formules des espèces dissoutes associées : acide chlorhydrique, acide nitrique, acide éthanoïque, soude ou hydroxyde de sodium, ammoniac.
- Représenter le diagramme de prédominance d'un couple acide-base.
- Exploiter un diagramme de prédominance ou de distribution.
- Résoudre une équation du second degré

IV. Des espèces particulières

Cours (0,5 séance)

Capacités visées :

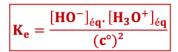
- Justifier le choix d'un indicateur coloré lors d'un titrage.
- Citer les propriétés d'une solution tampon.

Bilan et correction d'exercices (2 séances)

Synthèse des activités:

Vidéo: Bilan de cours sur force des acides et des bases (Stella)

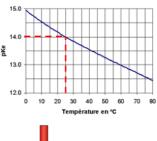
https://www.youtube.com/watch?v=CrCuO6Jdvek

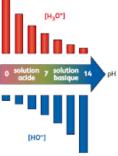

I. Autoprotolyse de l'eau – Produit ionique de l'eau

LE PRODUIT IONIQUE DE L'EAU K_e

Dans le cas de la réaction d'autoprotolyse de l'eau, on a :

$$2H_2O_{(l)}\rightleftarrows HO_{(aq)}^- + H_3O_{(aq)}^+$$


Et la constante d'équilibre K_e de cette réaction se nomme dans ce cas « produit ionique de l'eau K_e ». Il dépend de la température et s'écrit :



On définit aussi le pK de la manière suivante :

$$pK_e = -logK_e \Leftrightarrow K_e = 10^{-pK_e}$$

A 25°C:
$$K_e = 10^{-14}$$
 et p $K_e = 14$

Application:

Soit une solution d'hydroxyde de sodium de concentration 5,0*10⁻² mol/L. Quelle est nature acido-basique de cette solution et quelle est la valeur de son pH ?

On sait que
$$K_e = [H_3O^+_{(aq)}] \times [OH^-_{(aq)}] = 10^{-14} \text{ d'où } [H_3O^+_{(aq)}] = \frac{10^{-14}}{[OH^-_{(aq)}]} = \frac{10^{-14}}{5.0*10^{-3}} = 2.0*10^{-12} \text{ mol/L}$$

Alors pH = - log $[H_3O^+_{(aq)}] = -\log 2.0*10^{-12} = 11.7$

II. Acides forts et bases fortes

FORCE D'UN ACIDE : L'ACIDE FORT

Définition

Un <u>acide fort</u> est un acide qui se dissocie de façon quasi-totale dans l'eau $(\tau_f \approx 1)$.

• Exemples : l'acide chlorhydrique ($H_3O^+_{(aq)}$; $Cl^-_{(aq)}$), l'acide sulfurique ($H_2SO_{4(aq)}$), l'acide nitrique ($HNO_{3(aq)}$)

Equation de	la réaction :	$AH_{(aq)} + H_2O_{(l)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$					
Etat du système	Avancement de la réaction	Quantités de matière présentes dans le système					
Initial	x = 0	$C_{A,i}.V$	solvant	0	0		
En cours	x	$C_{A,i}V-x$	solvant	х	х		
Final	$x = x_f$	$C_{A,i}V-x_f\approx 0$	solvant	$\mathbf{x}_{f} \approx \mathbf{x}_{max}$	$x_f \approx x_{max}$		
Final si réaction totale	$x = x_{max}$	$C_{A,i}.V - x_{max} = 0$	solvant	X _{max}	X _{max}		

Le réactif limitant étant l'acide fort et la réaction étant quasi-totale, on peut considérer que :

 $\begin{array}{cccc} C_{A,i}.\,V-x_f=0 \Leftrightarrow x_f=C_{A,i}.\,V\\ \text{Or, on voit aussi dans le tableau}\\ \text{d'avancement que}:n_f(H_30^+)=x_f\\ \text{Donc}: \end{array}$

$$n_{f}(H_{3}O^{+}) = C_{A,i}.V \Leftrightarrow \frac{n_{f}(H_{3}O^{+})}{V} = C_{A,i}$$
$$\Rightarrow [H_{3}O^{+}]_{f} = C_{A,i}$$

$$\begin{split} \text{Or}: \text{pH} &= -log\left(\frac{[\text{H}_3\text{O}^+]}{c^\circ}\right) \\ \Rightarrow & \text{A l'équilibre}: \boxed{\text{pH} &= -log\left(\frac{\text{C}_{\text{A},i}}{c^\circ}\right)} \end{split}$$

FORCE D'UNE BASE : LA BASE FORTE

Définition

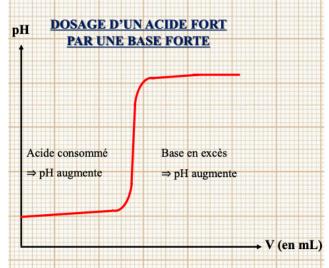
Une base forte est une base qui se dissocie de façon quasi-totale dans l'eau ($\tau_f \approx 1$).

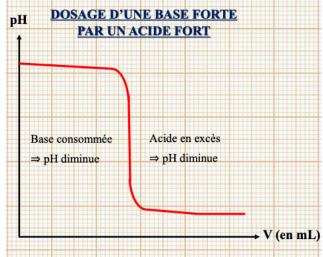
• Exemples : l'hydroxyde de sodium ou soude ($Na_{(aq)}^+; HO_{(aq)}^-$), l'hydroxyde de potassium ou potasse ($K_{(aq)}^+; HO_{(aq)}^-$).

Equation de la réaction :		$B_{(aq)} + H_2O_{(l)} \rightleftharpoons BH_{(aq)}^+ + HO_{(aq)}^-$						
Etat du système	Avancement de la réaction	Quantités de matière présentes dans le système						
Initial	x = 0	$C_{B,i}.V$	solvant	0	0			
En cours	x	$C_{B,i}V-x$	solvant	x	х			
Final	$x = x_f$	$C_{B,i}V-x_f \approx 0$	solvant	$x_f \approx x_{max}$	$x_f \approx x_{max}$			
Final si réaction totale	$x = x_{max}$	$C_{B,i}.V - X_{max} = 0$	solvant	X _{max}	X _{max}			

Le réactif limitant étant la base forte et la réaction étant quasi-totale, on peut considérer que :

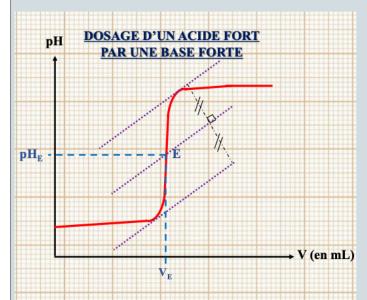
$$C_{B,i}$$
. $V - x_f = 0 \Leftrightarrow x_f = C_{B,i}$. V


Or, on voit aussi dans le tableau d'avancement que : $n_f(\mbox{Ho}^-) = x_f$

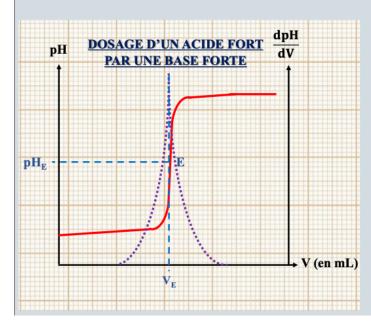

Donc :

$$\begin{split} n_f(\text{HO}^-) &= C_{\text{B,i}}.V \Leftrightarrow \frac{n_f(\text{HO}^+)}{V} = C_{\text{B,i}} \\ \Rightarrow & [\text{HO}^-]_{\text{eq}} = C_{\text{B,i}} \end{split}$$

$$\begin{aligned} \text{Or} : K_e &= \frac{[\text{HO}^-]_{\acute{eq}} \cdot [\text{H}_3\text{O}^+]_{\acute{eq}}}{(c^\circ)^2} \\ \Leftrightarrow [\text{H}_3\text{O}^+]_{\acute{eq}} &= \frac{K_e \cdot (c^\circ)^2}{[\text{HO}^-]_{eq}} \Rightarrow [\text{H}_3\text{O}^+]_{\acute{eq}} = \frac{K_e \cdot (c^\circ)^2}{C_{B,i}} \\ \text{Or} : \text{pH} &= -\log\left(\frac{[\text{H}_3\text{O}^+]}{c^\circ}\right) \\ \Rightarrow \text{pH} &= -\log\left(\frac{K_e \cdot (c^\circ)^2}{c^\circ \cdot C_{B,i}}\right) \\ \Rightarrow \boxed{\textbf{pH} = \textbf{pK}_e + \textbf{log}(\textbf{C}_{B,i})} \end{aligned}$$


COURBES ACIDE FORT / BASE FORTE

DETERMINATION DU VOLUME EQUIVALENT – METHODE 1


<u>DETERMINATION DU VOLUME EQUIVALENT PAR LA</u> METHODE DES TANGENTES PARALLELES :

- Tracer deux tangentes à la courbe pH = f(V) parallèles entre elles, juste avant et juste après le saut de pH
- Tracer la parallèle équidistante des deux autres.

L'intersection de cette dernière parallèle avec la courbe détermine le point équivalent dont les coordonnées sont (V_E; pH_E).

DETERMINATION DU VOLUME EQUIVALENT – METHODE 2

POINT METHODE

DETERMINATION DU VOLUME EQUIVALENT PAR LA METHODE DE LA COURBE DERIVEE :

- Tracer la courbe de la dérivée du pH en fonction de $V : \frac{dpH}{dV} = f(V)$
- Cette courbe présente un extremum (maximum ou minimum) pour une abscisse égale au volume équivalent V_E.

Explication:

La courbe de la dérivée du pH en fonction de $V(\frac{dpH}{dV} = f(V))$ correspond à la <u>pente de la courbe</u> pH = f(V) en chaque point de celle-ci. On remarque bien que cette pente **augmente** jusqu'au point équivalent E, **puis diminue** alors à partir de celui-ci.

FORCE D'UN ACIDE : L'ACIDE FAIBLE

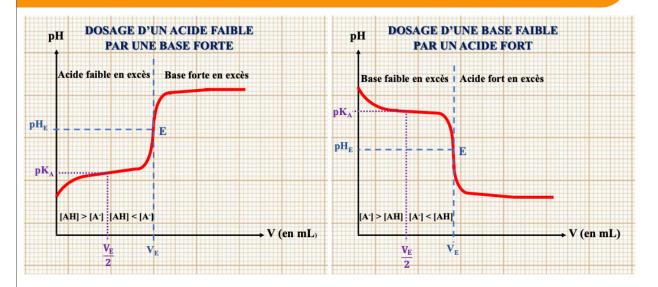
Définition

Un <u>acide faible</u> est un acide qui se dissocie faiblement dans l'eau ($\tau_f \ll 1$).

• Exemples : les acides carboxyliques (RCOO $H_{(aq)}$) comme l'acide éthanoïque (C H_3 COO $H_{(aq)}$)

Equation de la réaction :		$AH_{(aq)} + H_2O_{(l)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$					
Etat du système	Avancement de la réaction	Quantités de matière présentes dans le système					
Initial	x = 0	$C_{A,i}.V$	solvant	0	0		
En cours	x	$C_{A,i}V-x$	solvant	x	х		
Final	$x = x_f$	$C_{A,i}.V - x_f \approx C_{A,i}.V$	solvant	$x_f \ll x_{max}$	$x_f << x_{max}$		
Final si réaction totale	$x = x_{max}$	$C_{A,i}.V - x_{max} = 0$	solvant	x _{max}	x _{max}		

FORCE D'UNE BASE: LA BASE FAIBLE


Définition

Une <u>base faible</u> est une base qui se dissocie faiblement dans l'eau ($\tau_f \ll 1$).

• Exemple: l'ammoniac ($NH_{3(aq)}$)

Equation de la réaction :		$B_{(aq)} + H_2O_{(l)} \rightleftharpoons BH_{(aq)}^+ + HO_{(aq)}^-$					
Etat du système	Avancement de la réaction	Quantités de matière présentes dans le système					
Initial	x = 0	$C_{B,i}.V$	solvant	0	0		
En cours	x	$C_{B,i}.V - x$	solvant	x	х		
Final	$x = x_f$	$C_{B,i}.V - x_f \approx C_{B,i}.V$	solvant	$x_f << x_{max}$	$x_f << x_{max}$		
Final si réaction totale	x = x _{max}	$C_{B,i}.V - x_{max} = 0$	solvant	X _{max}	x _{max}		

COURBES ACIDE FAIBLE / BASE FAIBLE

LA CONSTANTE D'ACIDITE KA

Lors d'une réaction acidobasique au cours de laquelle un acide réagit avec de l'eau, on a :

$$AH_{(aq)} + H_2O_{(l)} \rightleftarrows A_{(aq)}^- + H_3O_{(aq)}^+$$

Et la constante d'équilibre K de cette réaction se nomme dans ce cas « constante d'acidité K_A» du couple. Elle dépend de la température et s'écrit :

$$K_A = \frac{[A^-]_{\acute{eq}} \cdot [H_3 O^+]_{\acute{eq}}}{[AH]_{\acute{eq}} \cdot c^\circ}$$

On définit aussi le pKA de la manière suivante :

$$\mathbf{pK_A} = -\mathbf{logK_A} \Leftrightarrow \mathbf{K_A} = 10^{-\mathbf{pK_A}}$$

LA RELATION D'HENDERSON-HASSELBACH

A partir des deux relations précédentes, on peut définir une autre relation nommée « relation d'Henderson-Hasselbach » :

$$\begin{aligned} &pK_{A} = -logK_{A} \\ &\Rightarrow pK_{A} = -log\left(\frac{[A^{-}]_{\acute{eq}} \cdot [H_{3}O^{+}]_{\acute{eq}}}{[AH]_{\acute{eq}} \cdot c^{\circ}}\right) \\ &\Rightarrow pK_{A} = -log\left(\frac{[A^{-}]_{\acute{eq}}}{[AH]_{\acute{eq}}}\right) - log\left(\frac{[H_{3}O^{+}]_{\acute{eq}}}{c^{\circ}}\right) \\ &\Rightarrow pK_{A} = -log\left(\frac{[A^{-}]_{\acute{eq}}}{[AH]_{\acute{eq}}}\right) + pH \end{aligned} \Rightarrow \begin{aligned} &pH = pK_{A} + log\left(\frac{[A^{-}]_{\acute{eq}}}{[AH]_{\acute{eq}}}\right) \end{aligned}$$

DOMAINE DE PREDOMINANCE

Cette relation d'Henderson-Hasselbach permet de prédire quelle sera l'espèce prédominante entre AH et A- à un pH donné.

En effet, on peut distinguer trois cas:

$$pH = pK_A$$
or:
$$pH = pK_A + \log\left(\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}\right)$$

$$\Rightarrow \log\left(\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}\right) = 0$$

$$\Rightarrow \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} = 10^0 = 1$$

$$\Rightarrow [A^-]_{\acute{e}q} = [AH]_{\acute{e}q}$$

$$pH < pK_A$$

$$or : pH = pK_A + log \left(\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}\right)$$

$$pK_A + log \left(\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}\right) < pK_A$$

$$\Rightarrow log \left(\frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}\right) < 0$$

$$\Rightarrow \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} < 10^0 = 1$$

$$\Rightarrow [A^-]_{\acute{e}q} < [AH]_{\acute{e}q}$$

$$\begin{aligned} \textbf{pH} &> \textbf{pK}_{\textbf{A}} \\ \text{or} : \textbf{pH} &= \textbf{pK}_{\textbf{A}} + \log \left(\frac{[\textbf{A}^{-}]_{\acute{e}q}}{[\textbf{AH}]_{\acute{e}q}} \right) \\ \textbf{pK}_{\textbf{A}} &+ \log \left(\frac{[\textbf{A}^{-}]_{\acute{e}q}}{[\textbf{AH}]_{\acute{e}q}} \right) > \textbf{pK}_{\textbf{A}} \\ &\Rightarrow \log \left(\frac{[\textbf{A}^{-}]_{\acute{e}q}}{[\textbf{AH}]_{\acute{e}q}} \right) > 0 \\ &\Rightarrow \frac{[\textbf{A}^{-}]_{\acute{e}q}}{[\textbf{AH}]_{\acute{e}q}} > 10^{0} = 1 \\ &\Rightarrow \boxed{[\textbf{A}^{-}]_{\acute{e}q} > [\textbf{AH}]_{\acute{e}q}} \end{aligned}$$

Base A⁻ prédomine

DIAGRAMME DE PREDOMINANCE

Etablir un diagramme de prédominance permet ainsi d'avoir une idée précise de l'espèce prédominante à un pH donné, à condition de connaître le pK_A du couple $AH_{(aq)}/A_{(aq)}^-$:

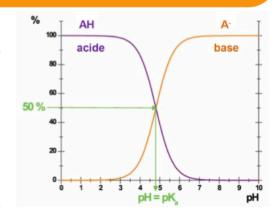
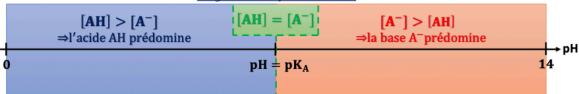



Diagramme de prédominance

IV. Des espèces particulières

EXEMPLE: LES INDICATEURS COLORES

Un indicateur coloré est un couple acide/base noté $IndH_{(aq)}/Ind_{(aq)}^-$ dont l'acide $IndH_{(aq)}$ et sa base conjuguée $Ind_{(aq)}^-$ ont des teintes différentes en solution aqueuse. La zone de virage (changement de teinte) se situe aux alentours du pK_A de ce couple, au moment aucune espèce ne prédomine sur l'autre. L'indicateur coloré peut être utilisé dans les titrages mettant en jeu un acide et une base. L'équivalence a alors lieu lors du changement de teinte. Indicateur coloré – Exemple du bromocrésol

 $[IndH] = [Ind^-]$ [Ind⁻] > [IndH] la base Ind⁻prédomine ⇒couleur de Ind⁻ (bleu) $[IndH] > [Ind^-]$ [IndH] ≈ [Ind⁻] ⇒l'acide IndH prédomine ur intern (vert) ⇒couleur de IndH $pK_A - 1$ $pH = pK_A$ $pK_A + 1$

EXEMPLE: LES INDICATEURS COLORES

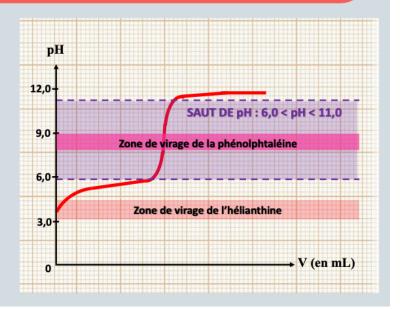
0.1

+ pH

	MOLECULE		COULEUR EN MILIEU :		ILIEU :	INDICATEUR COLORE	MOLECULE	ZONE DE
INDICATEUR COLORE		ZONE DE VIRAGE	acide	zone de virage	basique	INDICATEOR COLORE	MOLECOLE	ZONE DE
Bleu de		pH = 0	rouge	orange	jaune	Jaune de méthyle	O'NON	2,9 < pl
bromothymol (BBT)		6,0 < pH < 7,6	jaune	vert	bleu	Hélianthine (ou méthylorange))—————————————————————————————————————	3,1 < p
Rouge de crésol	но фон	0,2 < pH < 1,8	rouge	orange	jaune	Bleu de bromophénol	Dr. Dr. Dr. OH	3,0 < p
Rouge de cresor	O.	7,2 < pH < 8,8	jaune	orange	rouge		Br Br OH	
Bleu de thymol	но	1,2 < pH < 2,8	rouge	orange	jaune	Vert de bromocrésol	Br C	3,8 < p
Bied de thymor		8,0 < pH < 9,6	jaune	vert	bleu			
Rouge de méthyle	H _I C _N No _N COOH	4,2 < pH < 6,2	rouge	orange	jaune	Rouge de bromophénol	NaO No	5,2 < p
Phénolphtaléine	6H ₃	8,0 < pH < 9,0	incolore	rose	fuschia	Rouge de phénol	HO CH'	6,4 < pl
	Q.	,,					но	
Jaune d'alizarine G	O ₂ N-()-OH	10,0 < pH < 12,0	jaune	orange	rouge	Thymolphtaléine	(A)	9,3 < pl

			COULEUR EN MILIEU:		
INDICATEUR COLORE	MOLECULE	ZONE DE VIRAGE	acide	zone de virage	basique
Jaune de méthyle	O" O	2,9 < pH < 4,0	rouge	orange	jaune
Hélianthine (ou méthylorange))	3,1 < pH < 4,4	rouge	orange	jaune
Bleu de bromophénol	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,0 < pH < 4,6	jaune	vert	bleu
Vert de bromocrésol	HO Br Br OH	3,8 < pH < 5,4	jaune	vert	bleu
Rouge de bromophénol	HO NIO O	5,2 < pH < 6,8	jaune	orange	rouge
Rouge de phénol	HO C FOOT	6,4 < pH < 8,0	jaune	orange	rouge
Thymolphtaléine	HO OH	9,3 < pH < 10,5	incolore	bleu clair	bleu

CHOIX DE L'INDICATEUR COLORE



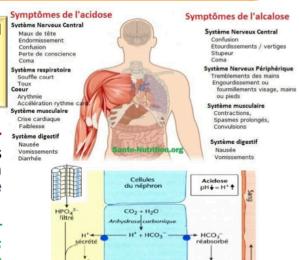
Dans le cas d'un dosage par titrage colorimétrique, le choix de l'indicateur coloré est important. Pour que la solution passe d'une couleur (ex : celle de IndH) à une autre (ex : celle de Ind-), il faut que la zone de virage de l'indicateur coloré se situe dans le saut de pH, et plus précisément, dans la zone d'équivalence.

Exemple:

Zone de virage de l'hélianthine : 3,1 < pH < 4,4 Zone de virage de la phénolphtaléine : 8,0 < pH < 9,0

La phénolphtaléine, contrairement à l'hélianthine pourra donc être utilisé comme indicateur coloré de cette réaction. En effet, sa zone de virage se situe en plein dans la zone d'équivalence.

SOLUTION TAMPON


Définition

Un système tampon est une solution dont le pH varie très faiblement lors :

- · de l'ajout modéré d'un acide ;
- · de l'ajout modéré d'une base ;
- · d'une dilution modérée.

Les systèmes tampons ont la capacité de stabiliser les changements de pH en absorbant soit les acides forts, soit les bases fortes. Un tampon acide-base consiste typiquement en un mélange d'acide faible et de sa base conjuguée (sel).

Exemple: dans le corps humain, le pH doit rester proche de 7,4 (7,35 < pH < 7,45) pour ne pas risquer une **alcalose** ou une **acidose**. Plusieurs systèmes tampons existent donc pour réguler le pH (dans les reins, les poumons, ou le sang).

NH4+

Tampon HCO₃té au liq tracellul

L'essentiel

La réaction d'un acide ou d'une base avec l'eau

Produit ionique de l'eau K_a

Réaction d'autoprotolyse de l'eau
$$H_2O(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HO^-(aq)$$

$$K_e = [H_3O^+]_{\acute{e}q} \times [HO^-]_{\acute{e}q}$$
 $\grave{A} 25 \, °C, K_e = 10^{-14,0}.$
 $pK_e = -log K_e$ $\grave{A} 25 \, °C, pK_e = 14,0.$

$$\text{À } 25 \,^{\circ}\text{C}, K_e = 10^{-14,0}$$

 $\text{À } 25 \,^{\circ}\text{C}, pK_e = 14,0.$

$$\frac{[H_3O^+]_{\acute{e}q}}{[H_3O^+]_{\acute{e}q}} > [HO^-]_{\acute{e}q} \qquad [H_3O^+]_{\acute{e}q} < \frac{[HO^-]_{\acute{e}q}}{[HO^-]_{\acute{e}q}}$$

$$[H_3O^+]_{\acute{e}q} = [HO^-]_{\acute{e}q}$$

$$[H_3O^+]_{\acute{e}q} < [HO^-]_{\acute{e}q}$$
 p K_e

Solution acide Solution neutre

Solution basique

Acide faible

AH(aq) +
$$H_2O(\ell) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

Transformation non totale: $\tau < 1$.

Base faible $A^{-}(aq) + H_2O(\ell) \rightleftharpoons AH(aq) + HO^{-}(aq)$ Transformation non totale: τ < 1.

Couple AH / A

Acide fort

AH(aq) + H₂O(
$$\ell$$
) \rightarrow A⁻(aq) + H₃O⁺(aq)
Transformation totale: $\tau = 1$.

Base forte

 $A^{-}(aq) + H_2O(\ell) \rightarrow AH(aq) + HO^{-}(aq)$ Transformation totale: $\tau = 1$.

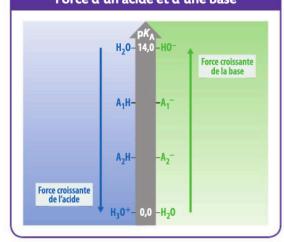
La constante d'acidité d'un couple acide-base

Constante d'acidité KA

$$K_{A} = \frac{AH(aq) + H_{2}O(\ell) \rightleftharpoons A^{-}(aq) + H_{3}O^{+}(aq)}{[AH]_{\acute{e}q}} \text{ et } pK_{A} = -\log K_{A} \Leftrightarrow K_{A} = 10^{-pK_{A}}$$

Diagrammes de distribution et de prédominance

- Diagramme de distribution : il représente les pourcentages des espèces acide et basique d'un même couple dans une solution en fonction du pH de la solution.
- Diagramme de prédominance :


$$[AH]_{\acute{eq}} > [A^{-}]_{\acute{eq}} \qquad [AH]_{\acute{eq}} = [A^{-}]_{\acute{eq}} \qquad [AH]_{\acute{eq}} < [A^{-}]_{\acute{eq}} \qquad pH$$

$$0 \qquad pK_{A} \qquad A^{-} \text{pr\'edomine}$$

Solution tampon

Une solution tampon est une solution dont le pH varie peu par dilution ou par ajout de petites quantités d'acide ou de base.

Force d'un acide et d'une base

Indicateur coloré acido-basique

- Un indicateur coloré est un couple acidebase dont les espèces conjuguées n'ont pas la même teinte.
- Un indicateur coloré est adapté à un titrage si sa zone de virage contient le pH à l'équivalence pH_F.